

Commercial Vehicle Information Exchange Window (CVIEW)

Master Test Plan

August 31, 1997

	Prepared for:	Prepared by:

�

�

	Federal Highway Administration	The Johns Hopkins University

		Applied Physics Laboratory

�DRAFT

Commercial Vehicle Information Exchange Window (CVIEW)

 Master Test Plan

� TOC \o "1-2" \t "Header,1" �1. Purpose	� GOTOBUTTON _Toc398358808 � PAGEREF _Toc398358808 �1��

2. Reference Documents	� GOTOBUTTON _Toc398358809 � PAGEREF _Toc398358809 �1��

3. Definitions	� GOTOBUTTON _Toc398358810 � PAGEREF _Toc398358810 �1��

4. Scope	� GOTOBUTTON _Toc398358811 � PAGEREF _Toc398358811 �3��

5. Features to be Tested	� GOTOBUTTON _Toc398358812 � PAGEREF _Toc398358812 �3��

6. Features Not to be Tested	� GOTOBUTTON _Toc398358813 � PAGEREF _Toc398358813 �3��

7. Approach	� GOTOBUTTON _Toc398358814 � PAGEREF _Toc398358814 �3��

7.1 Program Phases	� GOTOBUTTON _Toc398358815 � PAGEREF _Toc398358815 �3��

7.2 General Approach	� GOTOBUTTON _Toc398358816 � PAGEREF _Toc398358816 �4��

7.3 Unit Testing	� GOTOBUTTON _Toc398358817 � PAGEREF _Toc398358817 �6��

7.4 Integration Testing	� GOTOBUTTON _Toc398358818 � PAGEREF _Toc398358818 �6��

7.5 System Testing	� GOTOBUTTON _Toc398358819 � PAGEREF _Toc398358819 �7��

7.6 Acceptance Testing	� GOTOBUTTON _Toc398358820 � PAGEREF _Toc398358820 �9��

8. Item Pass/Fail Criteria	� GOTOBUTTON _Toc398358821 � PAGEREF _Toc398358821 �9��

9. Test Suspension and Resumption Criteria	� GOTOBUTTON _Toc398358822 � PAGEREF _Toc398358822 �10��

10. Environmental Requirements	� GOTOBUTTON _Toc398358823 � PAGEREF _Toc398358823 �10��

11. Responsibilities	� GOTOBUTTON _Toc398358824 � PAGEREF _Toc398358824 �10��

12. Deliverables, Milestones & Schedules	� GOTOBUTTON _Toc398358825 � PAGEREF _Toc398358825 �10��

13. Problem Reporting and Corrective Action	� GOTOBUTTON _Toc398358826 � PAGEREF _Toc398358826 �10��

14. Tools, Techniques, and Methodologies	� GOTOBUTTON _Toc398358827 � PAGEREF _Toc398358827 �11��

15. Approvals	� GOTOBUTTON _Toc398358828 � PAGEREF _Toc398358828 �11��

Appendix A - Acceptance Test	� GOTOBUTTON _Toc398358829 � PAGEREF _Toc398358829 �1��

Appendix B - System Test	� GOTOBUTTON _Toc398358830 � PAGEREF _Toc398358830 �1��

B-1. Functionality Test	� GOTOBUTTON _Toc398358831 � PAGEREF _Toc398358831 �2��

B-2. System Performance and Stress Test Plan	� GOTOBUTTON _Toc398358832 � PAGEREF _Toc398358832 �64��

2.1 Introduction	� GOTOBUTTON _Toc398358833 � PAGEREF _Toc398358833 �64��

2.2 Scope	� GOTOBUTTON _Toc398358834 � PAGEREF _Toc398358834 �64��

2.3 Subscription Fulfillment Test	� GOTOBUTTON _Toc398358835 � PAGEREF _Toc398358835 �65��

2.4 Subscription Download Test	� GOTOBUTTON _Toc398358836 � PAGEREF _Toc398358836 �65��

2.5 Client Database Update	� GOTOBUTTON _Toc398358837 � PAGEREF _Toc398358837 �71��

2.6 Query Processing	� GOTOBUTTON _Toc398358838 � PAGEREF _Toc398358838 �71��

Appendix C - Integration Test	� GOTOBUTTON _Toc398358839 � PAGEREF _Toc398358839 �1��

Appendix D - Unit Test (ADM)	� GOTOBUTTON _Toc398358840 � PAGEREF _Toc398358840 �1��

Appendix E - Unit Test (SLP)	� GOTOBUTTON _Toc398358841 � PAGEREF _Toc398358841 �1��

Appendix F - Unit Test (IMH)	� GOTOBUTTON _Toc398358842 � PAGEREF _Toc398358842 �1��

Appendix G - Unit Test (IOT)	� GOTOBUTTON _Toc398358843 � PAGEREF _Toc398358843 �1��

Appendix H - Unit Test (OMH)	� GOTOBUTTON _Toc398358844 � PAGEREF _Toc398358844 �1��

Appendix I - Unit Test (SDB)	� GOTOBUTTON _Toc398358845 � PAGEREF _Toc398358845 �1��

Appendix J - Unit Test (SDM)	� GOTOBUTTON _Toc398358846 � PAGEREF _Toc398358846 �1��

�

�DRAFT

Commercial Vehicle Information Exchange Window (CVIEW)

 Master Test Plan

Purpose

The purpose of this plan is to establish a formal set of guidelines and activities to be adhered to and performed by JHU/APL and the developer to ensure that the CVIEW System has been tested successfully and is fully compliant with the CVIEW System requirements.

The initial release of this document, submitted in draft form, provides a general framework for establishing the testing environment and provides general guidelines for performing unit, integration, system, and acceptance testing of the CVIEW System. Several draft versions of this document will be issued, following review and comment by the developer, as details regarding the software design evolve.

Reference Documents

Software Development and Documentation, Military Standard, MIL-STD-498, 5 December 1994, AMSC NO. N7069.

IEEE Standard for Software Quality Assurance Plans, ANSI/IEEE Std 730-1984, June 14, 1984

POR-5804, Trident II Data processing Plan, Vol. 1, Johns Hopkins University/Applied Physics Laboratory, January 1991

Definitions

The information presented below represents a definition of terms used throughout this document.

Approval. Written notification by an authorized representative of the acquirer that a developer's plans, design, or other aspects of the project appear to be sound and can be used as the basis for further work. Such approval does not shift responsibility from the developer to meet contractual requirements.

Computer program. A combination of computer instructions and data definitions that enable computer hardware to perform computational or control functions.

Computer Software Configuration Item (CSCI). An aggregation of software that satisfies an end use function and is designated for separate configuration management by the acquirer. CSCIs are selected based on tradeoffs among software function, size, host or target computers, developer, support concept, plans for reuse, criticality, interface considerations, need to be separately documented and controlled, and other factors.

Developer. An organization that develops software products ("develops" may include new development, modification, reuse, reengineering, maintenance, or any other activity that results in software products.

Pass/Fail Criteria. Decision rules used to determine whether a software item or a software feature passes or fails a test.

Software development file (SDF). A repository for material pertinent to the development of a particular body of software. Contents typically include (either directly or by reference) considerations, rationale, and constraints related to requirements analysis, design, and implementation; developer-internal test information; and schedule and status information.

 Software Feature. A distinguishing characteristic of a software item, e.g., performance, portability, functionality.

Software Item. Source code, object code, job control code, control data, or a collection of these items.

Software test environment. The facilities, hardware, software, firmware, procedures, and documentation needed to perform qualification, and possibly other, testing of software. Elements may include but are not limited to simulators, code analyzers, test case generators, and path analyzers, and may also include elements used in the software engineering environment.

Software unit. An element in the design of a CSCI; for example, a major subdivision of a CSCI, a component of that subdivision, a class, object, module, function, routine, or database. Software units may occur at different levels of a hierarchy and may consist of other software units. Software units in the design may or may not have a one-to-one relationship with the code and data entities (routines, procedures, databases, data files, etc.) that implement them or with the computer files containing those entities.

Test item. A software item which is an object of testing.

Test Log. A chronological record of relevant details about the execution of the tests.

Test Summary Report. A document or set of documents summarizing testing activities and results.

Testing. The process of analyzing a software item to detect the differences between existing and required conditions, i.e., bugs, and to evaluate the features of the software item.

Scope

This test plan covers general guidelines for performing unit, integration, system, and acceptance testing of the CVIEW System. These guidelines will be expanded to include specific test design, case, and procedure specifications as details regarding the software design evolve. Testing will ultimately cover operator and user procedures, as well as programs and processing control. In addition to comprehensively testing multi-process functionality including multi-threading, inter-process communications and multi-processor utilization, external interfaces, security, recovery and performance will also be evaluated.

Features to be Tested

The CVIEW System, as specified in the CVIEW Physical Architecture Document, is partitioned into eight CSCIs. These are:

Input Message Handler

Administrative Manager

Subscriber Processor

External Request Processor

Safety Data Manager

Output Message Handler

OPCON Manager

Input Output Translator

�tc \l 2 "5.5	Software requirements analysis"�

The features of each CSCI will be fully defined and documented in the CVIEW Physical Architecture Document. In subsequent versions of the Master Test Plan, the specific features of each CSCI and their inter-relationships will be explicitly identified for testing purposes.

Features Not to be Tested

Features of the CVIEW System which are not to be tested initially are TBD.

Approach

Program Phases

The CVIEW Project will be conducted in multiple phases. New system capabilities will be added with each phase and tested accordingly. The CVIEW Phase Chart, which outlines planned phases, timelines and capabilities is, for planning purposes, presented below.

� EMBED Excel.Sheet.5 ���

General Approach

Software development and testing shall be a collaborative effort between the JHU/APL and the developer. A graphical depiction of the development and test approach is shown in Figure 1.

� EMBED PowerPoint.Slide.7 ���

During the development and test cycle, JHU/APL shall be responsible for developing and maintaining an interim version of the CVIEW System at its facility. This system is henceforth referred to as the Interim CVIEW System and shall be used for software prototype development and testing. Prototype software shall be developed by JHU/APL, in accordance with the specifications of the CVIEW Logical and Physical Architecture, and supplied to the developer.

The developer shall be responsible for developing and maintaining a development version of the production CVIEW System, henceforth referred to as the CVIEW System. The developer shall review and modify, where applicable, prototype software supplied by JHU/APL and incorporate it into the CVIEW System. The developer shall provide JHU/APL with builds (releases) of the production software, at the CSCI level or above, to be installed on the Interim CVIEW System, replacing prototype code, for testing in accordance with the Master Test Plan. Concurrent testing shall also be conducted at the developer’s facility. Software deficiencies, detected during testing, shall be corrected by the developer and the corrected code re-installed on the Interim CVIEW System for further testing. This iterative cycle shall continue until all detected deficiencies have been eliminated.

APL and the developer will use the system documentation to prepare all test design, case, and procedure specifications to support unit, integration, system, and acceptance testing. This approach will verify the accuracy and comprehensives of the information in the documentation in those areas covered by the tests.

�Unit Testing

Unit testing means ensuring that all aspects of each software unit’s detailed design are comprehensively tested.

�PRIVATE ��Preparing for unit testing�tc \l 3 "5.7.2	Preparing for unit testing"�

The developer shall establish test cases (in terms of inputs, expected results, and evaluation criteria), test procedures, and test data for testing the software corresponding to each software unit. The test cases shall cover all aspects of the unit's detailed design. The developer shall record this information in the appropriate software development files (SDFs).

�PRIVATE ��Performing unit testing�tc \l 3 "5.7.3	Performing unit testing"�.

The developer shall test the software corresponding to each software unit. The testing shall be in accordance with the unit test cases and procedures.

�PRIVATE ��Revision and retesting�tc \l 3 "5.7.4	Revision and retesting"�.

The developer shall make all necessary revisions to the software, perform all necessary retesting, and update the software development files (SDFs) and other software products as needed, based on the results of unit testing.

�PRIVATE ��Analyzing and recording unit test results�tc \l 3 "5.7.5	Analyzing and recording unit test results"�

The developer shall analyze the results of unit testing and shall record the test and analysis results in appropriate software development files (SDFs).

Integration Testing

The developer shall perform integration testing in accordance with the following requirements.

	Note 1: Integration testing means integrating the software corresponding to two or more software units, testing the resulting software to ensure that it works together as intended, and continuing this process until all software in each CSCI is integrated and tested.

	Note 2: If a CSCI is developed in multiple builds, integration testing of that CSCI will not be completed until the final build. Integration testing in each build should be interpreted to mean integrating software developed in the current build with other software developed in that and previous builds, and testing the results.

�PRIVATE ��Preparing for integration testing�tc \l 3 "5.8.1	Preparing for unit integration and testing"�

The developer shall establish test cases (in terms of inputs, expected results, and evaluation criteria), test procedures, and test data for conducting integration testing. The test cases shall cover all aspects of the CSCI architectural design. This information shall be recorded by the developer in the appropriate software development files (SDFs).

�PRIVATE ��Performing integration testing�tc \l 3 "5.8.2	Performing unit integration and testing"�

The developer shall perform integration testing. The testing shall be in accordance with the integration test cases and procedures. JHU/APL shall also perform independent functional tests of each CSCI.

�PRIVATE ��Revision and retesting�tc \l 3 "5.8.3	Revision and retesting"�.

The developer shall make all necessary revisions to the software, perform all necessary retesting, in conjunction with JHU/APL, and update the software development files (SDFs) and other software products as needed, based on the results of integration testing.

�PRIVATE ��Analyzing and recording integration test results�tc \l 3 "5.8.4	Analyzing and recording unit integration and test results"�.

The developer shall analyze the results of integration testing. Testing and analysis results shall be recorded in the Integration Test Results Document by the developer and be reviewed and approved by JHU/APL.

System Testing

The developer shall participate in System testing activities in accordance with the following requirements. Two types of system tests shall be conducted: functionality testing and performance testing.

Definition of System Testing

System testing insures that the individual CSCIs work together as they are intended to. It involves testing two or more CSCIs together, and ultimately the entire system as a whole. Two types of system testing shall be conducted: functional testing and performance testing. Stress testing is included as a part of performance testing.

Functional Testing

Functional system testing means integrating CSCIs with interfacing CSCIs, testing the resulting groupings to determine whether they work together as intended, and continuing this process until all CSCIs in the system are integrated and tested.

If a system or CSCI is developed in multiple builds, system testing may not be complete until the final build. System testing in each build should be interpreted to mean integrating the current build of each CSCI with the current build of the other and testing the results to ensure that the system requirements (other than performance requirements) to be implemented in that build have been met.

Performance and Stress Testing

Performance testing exercises the system as a whole to ensure that it will meet it’s performance and capacity requirements. Stress testing ensures that extreme operating conditions, such as functioning at or beyond the intended capacity limits, do not cause system failure or loss of data. Since performance is influenced by the total system configuration, all system components, including hardware, are exercised.

Performance testing a full system at full capacity can be highly resource intensive. To mitigate resource drain, statistical techniques may be employed to predict system performance from a smaller number of tests or a set of tests requiring a reduced set of system resources. Use of these techniques promotes resource utilization efficiency while ensuring adequate testing of performance requirements.

�PRIVATE ��Preparing for system testing�tc \l 3 "5.10.1	Preparing for CSCI/HWCI integration and testing"�

The developer and JHU/APL shall participate in developing and recording test cases (in terms of inputs, expected results, and evaluation criteria), test procedures, and test data for conducting system testing. The test cases shall cover all aspects of the system-wide and system architectural design. The developer shall record software-related information in appropriate software development files (SDFs).

�PRIVATE ��Performing system testing�tc \l 3 "5.10.2	Performing CSCI/HWCI integration and testing"�.

The developer and JHU/APL shall participate in system testing. The testing shall be in accordance with the system test cases and procedures.

�PRIVATE ��Revision and retesting�tc \l 3 "5.10.3	Revision and retesting"�.

The developer shall make necessary revisions to the software, participate in all necessary retesting, in conjunction with JHU/APL, and update the appropriate software development files (SDFs) and other software products as needed, based on the results of system testing. In the case of performance and capacity testing, hardware configurations may also have to be modified.

�PRIVATE ��Analyzing and recording system test results�tc \l 3 "5.10.4	Analyzing and recording CSCI/HWCI integration and test results"�.

JHU/APL shall be responsible for analyzing the results of system testing. JHU/APL shall document analysis and test results in the System Test Results Document.

Acceptance Testing

The developer shall participate in system acceptance testing in accordance with the following requirements.

	Note: Acceptance testing is performed to demonstrate to the Federal Highway Administration Office of Motor Carriers (FHWA/OMC) that all system requirements have been met.

�PRIVATE ��Preparing for system acceptance testing�tc \l 3 "5.11.3	Preparing for system qualification testing"�.

The developer and JHU/APL shall participate in devel�oping and recording the test preparations, test cases, test procedures and test data to be used for acceptance testing and the traceability between the test cases and the system requirements.

�PRIVATE ��Performing acceptance testing�tc \l 3 "5.11.5	Performing system qualification testing"�

The developer and JHU/APL shall participate in acceptance testing. This participation shall be in accordance with the acceptance test cases and procedures.

Independence in acceptance testing�tc \l 3 "5.11.1	Independence in system qualification testing"�

The person(s) responsible for performing acceptance testing shall not be the persons who performed detailed design or implementation of software in the system. This does not preclude persons who performed detailed design or implementation of software in the system from contributing to the process, for example, by contributing test cases that rely on knowledge of the system's internal implementation

�PRIVATE ��Revision and retesting�tc \l 3 "5.11.6	Revision and retesting"�

The developer shall make necessary revisions to the software, provide JHU/APL advance notice of retesting, participate in all necessary retesting, in conjunction with JHU/APL, and update the software development files (SDFs) and other software products as needed, based on the results of acceptance testing.

�PRIVATE ��Analyzing and recording acceptance test results

JHU/APL shall be responsible for analyzing and recording the results of acceptance testing. The results shall be documented in the Acceptance Test Results Document.

Item Pass/Fail Criteria

Requirements for determining item pass/fail criteria are TBD.

Test Suspension and Resumption Criteria

Requirements for determining test suspension and resumption criteria are TBD.

Environmental Requirements

�tc \l 3 "5.2.2	Software test environment"�The developer shall establish, control, and maintain a software test environment to perform unit, integration, system and acceptance testing of software. The developer shall ensure that each element of the environment performs its intended functions.

Responsibilities

Specific testing responsibilities assigned to JHU/APL and the developer for unit, integration, functional CSCI, system, and acceptance testing are summarized in the table below.

Test Type�Participant��Facility����APL�SAIC�APL�SAIC��Unit Test��x��x��Integration Test��x��x��CSCI Functional Test�x��x���System Test�x�x��x��Acceptance Test�x�x��x��Deliverables, Milestones & Schedules

JHU/APL has responsibility for the following software testing deliverables and milestones:

Phase 1 Testing Deliverables:

Aug 1997	Master Test Plan

Jun 1998	Master Test Plan (Unit and Integration Test Results revised for other systems and capabilities)

Sep 1998	Master Test Plan (System Test Results revised for other systems and capabilities)

Problem Reporting and Corrective Action

Problem reporting and corrective action issues were addressed in the SAFER Quality Assurance Plan (QAP). The SAFER QAP shall also apply to the CVIEW software development effort.

Tools, Techniques, and Methodologies

Issues related to tools, techniques, and methodologies were addressed in the SAFER Quality Assurance Plan. The SAFER QAP shall also apply to the CVIEW software development effort.

Approvals

Approval for the satisfactory completion of unit testing is the responsibility of the developer with the concurrence of JHU/APL. Approval for the satisfactory completion of integration, system, and acceptance testing must be obtained from JHU/APL and FHWA/OMC prior to the release of the CVIEW System for production processing.

�

Appendix A - Acceptance Test

CVIEW System

Acceptance Test Plans and Test Reports�The CVIEW Acceptance Test Plans are

to be supplied (TBS)

				

�

Appendix B - System Test

CVIEW System Test Plans and Reports

�Functionality Test

The following sections define the functionality tests conducted on the CVIEW system as a whole and report on the results of performing each test.

�System Functionality Test Plan

				

System ID:	Carrier Snapshot

SYS ID: SYS-CS-001

Version Control ID: APL V01-B02	

Affected CSCI:	IMH, SDM, OMH

System Function:

Detect, accept and process a single mailbox request for a carrier snapshot using a USDOT# as input in pseudo-EDI format;

Send the snapshot to a given single requester’s mailbox.

Requirement to be validated:

IMH must read a snapshot request from the input mailbox

IMH must recognize it as a carrier snapshot request

IMH must parse the EDI format request to obtain the DOT number

IMH must fill in the request structure with the DOT number

IMH must call the appropriate SDM routine to continue processing

SDM must receive the packet header, request header, and request properly filled in with data types and the desired DOT number.

SDM must call OMH with the packet_header, request header, and send request properly filled in.

OMH must receive the proper carrier snapshot request from SDM_retrieve_safety_data.

OMH must query the database and retrieve a carrier snapshot.

OMH must send the snapshot to the requester’s mailbox in text form.

Test Tools, Drivers, or Special Conditions:

The EudoraLite mail package was used to send the request. The SDB library of SQL statements embedded in C code was used to retrieve the snapshot from the Oracle v.7.2 database. The SQLPlus utility was used to view the database and verify results. The MBX library, based on the Distinct mail protocol software, was used to extract the message from the mailbox for processing and to forward results to the requester’s mailbox.

Input Data:

An input file in EDI format was sent to IMH via the Eudora mail package:

ST*285*000010010

BGN*28*54321*951117*0800*GM

NM1*41*1*ECKEL*JOHN*MORRIS***57*CSI

NX1*MC

N9*2I*1

LM*FH

LQ*T07*Q106

LM*FH

LQ*T10*Q1

LM*FH

LQ*T10*Q200

REF*MCI*0000004

Expected Outcome:

The carrier snapshot for DOT number 4 should be received in text form in the requester’s mailbox.

Test Procedure Steps:

Set up the message in EudoraLite. Send it to the IMH input mailbox.

Read the snapshot for the desired DOT number from the requester’s mailbox. Use the SQLPlus utility to view the carrier snapshot in the database and verify that it is the same data received in the mail message.

Analysis Procedures:

�System Functionality Test Report

					

System ID: 	Carrier Snapshot

SYS ID: SYS-CS-001

Version Control ID: APL V01-B02				Test Seq Number: 	01

Test Conductor:	Grace McGonnigal				Test Date: 10/1//96

Purpose of Test:

To verify that the function executes as planned.

Actual Results:

The desired snapshot, for DOT number 4, was received in the requester’s mailbox, and was read using the EudoraLite mail package.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�System Functionality Test Plan

				

System ID:	Carrier Snapshot

SYS ID: SYS-CS-002

Version Control ID: APL V01-B02	

Affected CSCI:	IMH, SDM, OMH

System Function:

Detect, accept and process five mailbox requests for carrier snapshot using USDOT numbers as input in pseudo-EDI format;

Send results to a single requester’s mailbox.

Requirement to be validated:

IMH must read a snapshot request from the input mailbox

IMH must recognize it as a carrier snapshot request

IMH must parse the EDI format request to obtain the DOT number

IMH must fill in the request structure with the DOT number

IMH must call the appropriate SDM routine to continue processing

IMH must loop through the above sequence of steps four more times provided that five snapshot requests are successively queued in the input mailbox with no other intervening messages.

For each of five successive carrier snapshot requests:

SDM must receive the packet header, request header, and request properly filled in with data types and the desired DOT number.

SDM must call OMH with the packet_header, request header, and send request properly filled in.

SDM must perform the above steps five times for five successive valid carrier snapshot requests forwarded to it by IMH.

For each of five successive requests:

OMH must receive the proper carrier snapshot request from SDM_retrieve_safety_data.

OMH must query the database and retrieve a carrier snapshot, provided that the DOT number is a valid one.

OMH must send the snapshot to the requester’s mailbox in text form.

OMH must loop through the above steps four additional times provided that a total of five carrier snapshots are queued in the input mailbox and sent by IMH to OMH.

Test Tools, Drivers, or Special Conditions:

The EudoraLite mail package was used to send the request. The SDB library of SQL statements embedded in C code was used to retrieve the snapshot from the Oracle v.7.2 database. The SQLPlus utility was used to view the database and verify results. The MBX library, based on the Distinct mail protocol software, was used to extract the message from the mailbox for processing and to forward results to the requester’s mailbox.

Input Data:

Five mail messages, with valid carrier snapshot requests.

Expected Outcome:

The carrier snapshot for the five DOT numbers should be received in text form in the requester’s mailbox.

Test Procedure Steps:

Start IMH process.

Set up the messages in Eudora. Send them to the IMH input mailbox.

Read the snapshots for the desired DOT numbers from the requester’s mailbox and verify their accuracy.

Analysis Procedures:

�System Functionality Test Report

					

System ID: 	Carrier Snapshot

SYS ID: SYS-CS-002

Version Control ID: APL V01-B02			Test Seq Number: 	01

Test Conductor:	Grace McGonnigal			Test Date: 10/1//96

Purpose of Test:

To verify that the function executes as planned.

Actual Results:

The five requested snapshot were received in the requester’s mailbox and were read using EudoraLite.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�System Functionality Test Plan

				

System ID:	Carrier Snapshot

SYS ID: SYS-CS-003

Version Control ID: APL V01-B02	

Affected CSCI:	IMH, SDM, OMH

System Function:

Detect, accept and process five mailbox requests for a carrier snapshot using USDOT numbers as input in pseudo-EDI format when five requests are already queued in the input mailbox;

Send results to requester’s mailbox.

Requirement to be validated:

IMH must read a snapshot request from the input mailbox

IMH must recognize it as a carrier snapshot request

IMH must parse the EDI format request to obtain the DOT number

IMH must fill in the request structure with the DOT number

IMH must call the appropriate SDM routine to continue processing

IMH must loop through the above sequence of steps a total of ten times when the first five requests are already queued in the input mailbox before IMH is started, and then five additional requests are sent immediately after IMH processing begins.

SDM must receive the packet header, request header, and request properly filled in with data types and the desired DOT number.

SDM must call OMH with the packet_header, request header, and send request properly filled in.

SDM must perform the above steps five times for five successive valid carrier snapshot requests forwarded to it by IMH.

OMH must receive the proper carrier snapshot request from SDM_retrieve_safety_data.

OMH must query the database and retrieve a carrier snapshot, provided that the DOT number is a valid one.

OMH must send the snapshot to the requester’s mailbox in text form.

OMH must loop through the above steps four additional times provided that a total of five carrier snapshots are queued in the input mailbox and sent by IMH to OMH.

Test Tools, Drivers, or Special Conditions:

The EudoraLite mail package was used to send the request. The SDB library of SQL statements embedded in C code was used to retrieve the snapshot from the Oracle v.7.2 database. The SQLPlus utility was used to view the database and verify results. The MBX library, based on the Distinct mail protocol software, was used to extract the message from the mailbox for processing and to forward results to the requester’s mailbox.

Input Data:

Ten mail messages, with valid carrier snapshot requests.

Expected Outcome:

The ten requested carrier snapshots should be received in the requester’s mailbox.

Test Procedure Steps:

Set up the ten messages in EudoraLite. Without starting IMH, send the first five to the IMH input mailbox.

Start the IMH process.

Immediately, use EudoraLite to send the next five messages to the IMH input mailbox.

Read the ten snapshots from the requester’s mailbox. Verify that the information in the text snapshot sent to the mailbox matches the information in the database.

Analysis Procedures:

�System Functionality Test Report

					

System ID: 	Carrier Snapshot

SYS ID: SYS-CS-003

Version Control ID: APL V01-B02			Test Seq Number: 	01

Test Conductor:	Grace McGonnigal			Test Date: 10/1//96

Purpose of Test:

To verify that the function executes as planned.

Actual Results:

The ten snapshots were received in the requester’s mailbox for the ten desired USDOT numbers.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�System Functionality Test Plan

				

System ID:	Carrier Snapshot

SYS ID: SYS-CS-004

Version Control ID: APL V01-B02	

Affected CSCI:	IMH. SDM, OMH

System Function:

Detect, accept and process a carrier snapshot request using a single digit USDOT #.

Detect, accept and process a carrier snapshot request using a seven digit USDOT #.

Detect, accept and process a carrier snapshot request using a USDOT # not contained in the database.

Detect, accept and process a carrier snapshot request using an erroneous USDOT # containing alphabetic characters.

Send results to the requester’s mailbox.

Requirement to be validated:

IMH must read the snapshot request from the input mailbox

IMH must recognize it as a carrier snapshot request

IMH must parse the EDI format request to obtain the DOT number

IMH must fill in the request structure with the DOT number

IMH must call the appropriate SDM routine to continue processing

SDM must receive the packet header, request header, and request with the fields filled in properly for each test request. It must forward the correct packet header, request header, and request to OMH for further processing.

OMH must receive the proper carrier snapshot request from SDM_retrieve_safety_data.

OMH must query the database and retrieve a carrier snapshot, provided that the DOT number is a valid one.

OMH must send the snapshot to the requester’s mailbox in text form.

Test Tools, Drivers, or Special Conditions:

The EudoraLite mail package was used to send the request. The SDB library of SQL statements embedded in C code was used to retrieve the snapshot from the Oracle v.7.2 database. The SQLPlus utility was used to view the database and verify results. The MBX library, based on the Distinct mail protocol software, was used to extract the message from the mailbox for processing and to forward results to the requester’s mailbox.

Input Data:

Mail messages, with carrier snapshot requests using a single digit USDOT#, a seven digit USDOT#, a USDOT# not contained in the database, and an erroneous USDOT# containing alphabetic characters.

Expected Outcome:

Carrier snapshots will be successfully retrieved for the single digit and seven digit USDOT numbers and will be received in the requester’s mailbox. For the USDOT number not contained in the database, and the erroneous one containing alphabetic characters, the database retrieval will fail, and a failure message will be received in the requester’s mailbox.

Test Procedure Steps:

Set up the messages in Eudora. Send them to the IMH input mailbox.

Read the four replies from the requester’s mailbox. Verify that carrier snapshots were received for the two valid USDOT numbers and that failure messages were received for the two invalid ones.

Analysis Procedures:

�System Functionality Test Report

					

System ID: 	Carrier Snapshot

SYS ID: SYS-CS-004

Version Control ID: APL V01-B02			Test Seq Number: 	01

Test Conductor:	Grace McGonnigal			Test Date: 10/1//96

Purpose of Test:

To verify that the function executes as planned.

Actual Results:

The single digit USDOT# test case succeeded. The correct carrier snapshot was received in the requester’s mailbox.

The seven digit USDOT# test case succeeded. The correct carrier snapshot was received in the requester’s mailbox.

The USDOT# that did not exist in the database resulted in a failure message.

The USDOT# containing alphabetic characters resulted in a failure message.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�System Functionality Test Plan

				

System ID:	Carrier Snapshot

SYS ID: SYS-CS-005

Version Control ID: APL V01-B02	

Affected CSCI:	IMH, SDM, OMH

System Function:

Process a carrier snapshot request that is pure nonsense (that does not begin with ‘R’, ‘C’, or ‘S’).

Process a carrier snapshot request containing ‘R’ followed by nonsense.

Process a carrier snapshot request containing ‘C’ followed by nonsense.

Process a carrier snapshot request containing ‘S’ followed by nonsense.

Requirement to be validated:

The system must process erroneous incoming requests by rejecting them without crashing, and by informing the requester of an error if appropriate.

Test Tools, Drivers, or Special Conditions:

The EudoraLite mail package was used to send the request. The SDB library of SQL statements embedded in C code was used to retrieve the snapshot from the Oracle v.7.2 database. The SQLPlus utility was used to view the database and verify results. The MBX library, based on the Distinct mail protocol software, was used to extract the message from the mailbox for processing and to forward results to the requester’s mailbox.

Input Data:

Mail messages, with carrier snapshot requests containing pure nonsense, ‘R’ followed by nonsense, ‘S’ followed by nonsense, and ‘C’ followed by nonsense.

Expected Outcome:

The system will not query the database for a pure nonsense, since it is not a request at all. An invalid file type message should print to the screen, but no mail message will be generated.

The system will attempt to update the database with a ‘C’ followed by nonsense carrier snapshot update request. Since the update will fail, subscribers will not receive carrier snapshots.

‘R’ or ‘S’ followed by nonsense will cause retrieval failure messages to be sent to the requester’s mailbox..

Test Procedure Steps:

Set up the messages in Eudora. Send them to the IMH input mailbox.

View output screen for possible error messages.

Check requester’s mailbox for retrieval failure messages.

Analysis Procedures:

�System Functionality Test Report

					

System ID: 	Carrier Snapshot

SYS ID: SYS-CS-005

Version Control ID: APL V01-B02			Test Seq Number: 	01

Test Conductor:	Grace McGonnigal			Test Date: 10/1//96

Purpose of Test:

To verify that the function executes as planned.

Actual Results:

For the pure nonsense request, a message was printed to the console that it was not a valid message type and the system did not process it further.

For the ‘C’ plus nonsense message, an attempt was made to update the database. It failed. Failure messages were sent to subscribers. This was a bug that was subsequently corrected, because nothing should have been sent to the subscriber list.

For the ‘R’ and ‘S’ plus nonsense messages, the retrievals failed and failure messages were sent to the requester’s mailbox.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�System Functionality Test Plan

				

System ID:	Carrier Snapshot

SYS ID: SYS CS-006

Version Control ID: APL V01-B02	

Affected CSCI:	IMH, SDM, OMH

System Function:

Send, accept, and process a single mailbox request for a carrier snapshot using a USDOT# as input in Aspen format (D=USDOT#).

Send results to requester’s mailbox.

Requirement to be validated:

IMH must read a snapshot request from the input mailbox

IMH must recognize it as a carrier snapshot request in Aspen format

IMH must parse the Aspen (D=#) format request to obtain the DOT number

IMH must fill in the request structure with the DOT number

IMH must call the appropriate SDM routine to continue processing

SDM must receive the packet header, request header, and request properly filled in with data types and the desired DOT number.

SDM calls OMH with the packet header, request header, and send request properly filled in.

OMH must receive the proper carrier snapshot request from SDM_retrieve_safety_data.

OMH must query the database and retrieve the snapshot, provided that the DOT number is valid.

OMH must send the snapshot to the requester’s mailbox in text form.

Test Tools, Drivers, or Special Conditions:

The EudoraLite mail package was used to send the request. The SDB library of SQL statements embedded in C code was used to retrieve the snapshot from the Oracle v.7.2 database. The SQLPlus utility was used to view the database and verify results. The MBX library, based on the Distinct mail protocol software, was used to extract the message from the mailbox for processing and to forward results to the requester’s mailbox.

Input Data:

Mail message containing the following two lines:

RCS

D=4

Expected Outcome:

The carrier snapshot for DOT number 4 should be received in text form in the requester’s mailbox.

Test Procedure Steps:

Set up the message in Eudora. Send it to the IMH input mailbox.

Read carrier snapshot for the USDOT number in the requester’s mailbox.

Analysis Procedures:

�System Functionality Test Report

					

System ID: 	Carrier Snapshot

SYS ID: SYS CS-006

Version Control ID: APL V01-B02			Test Seq Number: 	01

Test Conductor:	Grace McGonnigal			Test Date: 10/1//96

Purpose of Test:

To verify that the function executes as planned.

Actual Results:

The correct carrier snapshot was received in the requester’s mailbox.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�System Functionality Test Plan

				

System ID:	Carrier Snapshot

SYS ID: SYS CS-009

Version Control ID: APL V01-B02	

Affected CSCI:	IMH, SDM, OMH

System Function:

Send, accept, and process mailbox requests for a carrier snapshot using USDOT numbers as inputs at various rates to determine system responsiveness.

Determine saturation point- first point at which mailbox is filling faster than it is emptying.

Before doing this, determine the minimum Sleep statement that will prevent POP3 error messages.

Send results to requesters’ mailboxes.

Requirement to be validated:

IMH must read a snapshot request from the input mailbox

IMH must fill in the request structure with the DOT number

IMH must call the appropriate SDM routine to continue processing

IMH must perform the above steps repeatedly under any reasonable level of system load.

Spurious POP3 error messages should not be printed to the output screen.

SDM must receive the packet header, request header, and request properly filled in with data types and the desired DOT number.

SDM must call OMH with the packet header, request header, and send request properly filled in.

OMH must receive the proper carrier snapshot request from SDM_retrieve_safety_data.

OMH must query the database and retrieve a carrier snapshot, provided that the DOT number is a valid one.

OMH must send the snapshot to the requester’s mailbox in text form.

Rapidly processing a large number of requests in sequence will not cause a crash or processing overload for OMH.

Test Tools, Drivers, or Special Conditions:

The EudoraLite mail package was used to send the request. The SDB library of SQL statements embedded in C code was used to retrieve the snapshot from the Oracle v.7.2 database. The SQLPlus utility was used to view the database and verify results. The MBX library, based on the Distinct mail protocol software, was used to extract the message from the mailbox for processing and to forward results to the requester’s mailbox.

 For this test, multiple requesters must be used to stress the system. One requester cannot send messages fast enough with EudoraLite, even if they are set up in advance.

During the test, no other processing should be done on the system.

To further stress the system, one hundred requests were queued in the input mailbox before the IMH process was started. Then three requester’s each sent one hundred additional requests at the same time. (Some of the three hundred requests were submitted twice).

Input Data:

Three hundred mail messages containing carrier snapshot requests in EDI format.

Expected Outcome:

Large numbers of requests will not crash or confuse the system. The system will be able to handle three to four hundred snapshot requests within a period of five to seven minutes.

Test Procedure Steps:

Set up three hundred different carrier snapshot request messages in EudoraLite.

Send one hundred requests to the IMH input mailbox.

Start processing.

Each requester will immediately send the assigned test messages to the IMH input mailbox.

Wait a few minutes for IMH to finish all retrievals.

Each requester will read the responses sent by the system to his/her mailbox and verify that a snapshot was received corresponding to each request submitted.

Analysis Procedures:

�System Functionality Test Report

					

System ID: 	Carrier Snapshot

SYS ID: SYS CS-009

Version Control ID: APL V01-B02			Test Seq Number: 	01

Test Conductor:	Grace McGonnigal			Test Date: 10/1//96

Purpose of Test:

To verify that the function executes as planned.

Actual Results:

A Sleep statement of 225 milliseconds prevented POP3 error messages. 200 milliseconds did not prevent all error messages, but did prevent most, so 225 ms seems to be a good threshold.

Carrier snapshots were rapidly received for the one hundred requests queued up before processing began. Two of the requesters rapidly received carrier snapshots for all requests submitted. The third requester was not using a proper Eudora account to send requests and receive responses. Some of his requests succeeded, but most failed. However, the problem seemed to be within the Eudora setup, not within IMH. IMH did not crash, and perfectly processed all other requests.

A saturation point was not reached with three people testing. Further testing must be done with a larger number of requesters.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�System Functionality Test Plan

				

System ID:	Carrier Update

SYS ID: SYS CU-001

Version Control ID: APL V01-B02	

Affected CSCI:	IMH, SDM, OMH

System Function:

Send, accept and process a single mailbox request for carrier snapshot add operation.

Use an empty subscriber list (no subscribers).

Requirement to be validated:

IMH must read a snapshot add request from the input mailbox

IMH must recognize it as a carrier snapshot add request

IMH must call the appropriate SDM routine to continue processing and provide it with the correct data types and the database update record itself.

SDM_update_data must receive a packet header, data header, and update data filled in with accurate information so that it can update the database.

Since there are no subscribers, messages should not be sent.

Test Tools, Drivers, or Special Conditions:

The EudoraLite mail package was used to send the request. The SDB library of SQL statements embedded in C code was used to retrieve the snapshot from the Oracle v.7.2 database. The SQLPlus utility was used to view the database and verify results. The MBX library, based on the Distinct mail protocol software, was used to extract the message from the mailbox for processing and to forward results to the requester’s mailbox.

Input Data:

One database update request, with valid data, and a USDOT number not yet existing in the database.

Expected Outcome:

The database will be updated with the correct carrier snapshot record. Since there are no subscribers, no snapshot messages will be sent to mailboxes.

Test Procedure Steps:

Send the update message to the IMH input mailbox.

Step through processing in debugger to verify that no attempt is made to mail snapshots to nonexistent subscribers.

After the system processes the message, use SQLPlus to verify that the record was written to the database.

Analysis Procedures:

�System Functionality Test Report

					

System ID: 	Carrier Update

SYS ID: SYS-CU-001

Version Control ID: APL V01-B02			Test Seq Number: 	01

Test Conductor:	Grace McGonnigal			Test Date: 10/1//96

Purpose of Test:

To verify that the function executes as planned.

Actual Results:

The carrier snapshot was correctly written to the database.

No mail messages were sent to nonexistent subscribers..

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�System Functionality Test Plan

				

System ID:	Carrier Update

SYS ID: SYS-CU-002

Version Control ID: APL V01-B02	

Affected CSCI:	IMH, SDM, OMH

System Function:

Send, accept and process a single mailbox request for carrier snapshot add operation.

Use a subscriber list containing one and only one valid subscriber.

Send copy of updated carrier snapshot to the one subscriber.

Requirement to be validated:

IMH must read a snapshot add request from the input mailbox

IMH must recognize it as a carrier snapshot add request

IMH must call the appropriate SDM routine to continue processing and provide it with the correct data types and the database update record itself.

SDM_update_data must receive a packet header, data header, and update data filled in with accurate information so that it can update the database.

SDM must call SLP to forward a snapshot update to the one subscriber.

OMH will forward a mail message containing a copy of the newly added snapshot to the one subscriber.

Test Tools, Drivers, or Special Conditions:

The EudoraLite mail package was used to send the request. The SDB library of SQL statements embedded in C code was used to retrieve the snapshot from the Oracle v.7.2 database. The SQLPlus utility was used to view the database and verify results. The MBX library, based on the Distinct mail protocol software, was used to extract the message from the mailbox for processing and to forward results to the requester’s mailbox.

Input Data:

One database update request, with valid data, and a USDOT number not yet existing in the database.

Expected Outcome:

The carrier snapshot will be successfully added to the database. The one subscriber will receive a copy of the snapshot.

Test Procedure Steps:

Set up the subscription table in the database to contain just one subscriber.

Mail the update message to the IMH input mailbox.

When the system finishes processing the message, use SQLPlus to verify that the carrier snapshot was added to the database.

Verify that a copy of the carrier snapshot was sent to the subscriber’s mailbox.

Analysis Procedures:

�System Functionality Test Report

					

System ID: 	Carrier Update

SYS ID: SYS-CU-002

Version Control ID: APL V01-B02			Test Seq Number: 	01

Test Conductor:	Grace McGonnigal			Test Date: 10/1//96

Purpose of Test:

To verify that the function executes as planned.

Actual Results:

The carrier snapshot was written to the database.

A copy of the snapshot was sent to the one subscriber’s mailbox.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�System Functionality Test Plan

				

System ID:	Carrier Update

SYS ID: SYS-CU-003

Version Control ID: APL V01-B02	

Affected CSCI:	IMH, SDM, OMH

System Function:

Send, accept and process a single mailbox request for carrier snapshot add operation.

Use a subscriber list containing at least three subscribers, one of which is invalid.

Requirement to be validated:

IMH must read a snapshot add request from the input mailbox

IMH must recognize it as a carrier snapshot add request

IMH must call the appropriate SDM routine to continue processing and provide it with the correct data types and the database update record itself.

SDM_update_data must receive a packet header, data header, and update data filled in with accurate information so that it can update the database.

SDM must call SL_fulfill_subscription to forward a snapshot update to the subscribers.

OMH will forward a mail message containing a copy of the newly added snapshot to the valid subscribers.

Having an invalid subscriber on the list will not cause a crash or processing problems.

Test Tools, Drivers, or Special Conditions:

The EudoraLite mail package was used to send the request. The SDB library of SQL statements embedded in C code was used to retrieve the snapshot from the Oracle v.7.2 database. The SQLPlus utility was used to view the database and verify results. The MBX library, based on the Distinct mail protocol software, was used to extract the message from the mailbox for processing and to forward results to the requester’s mailbox.

Input Data:

One database update request, with valid data, and a USDOT number not yet existing in the database.

Expected Outcome:

The carrier snapshot will be successfully added to the database. The valid subscribers will receive copies of the snapshot in their mailboxes. A snapshot message will be sent to the invalid user and the mail system will deal with it as an invalid address.

Test Procedure Steps:

Send carrier snapshot update message to the IMH input mailbox.

After the system finishes processing the message, use SQLPlus to view the new snapshot record in the database.

Verify that the two valid subscribers receive copies of the snapshot in their mailboxes.

Analysis Procedures:

�System Functionality Test Report

					

System ID: 	Carrier Update

SYS ID: SYS-CU-003

Version Control ID: APL V01-B02			Test Seq Number: 	01

Test Conductor:	Grace McGonnigal			Test Date: 10/1//96

Purpose of Test:

To verify that the function executes as planned.

Actual Results:

Data structures for packet header, data header, and update data were properly filled in and passed to SDM_update_safety_data.

The carrier snapshot was added to the database.

The two valid subscribers received copies of the snapshot in their mailboxes.

The invalid subscriber case caused a problem due to a bug in MBX, which is being corrected.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�System Functionality Test Plan

				

System ID:	Carrier Update

SYS ID: SYS-CU-006

Version Control ID: APL V01-B02	

Affected CSCI:	IMH, SDM, OMH

System Function:

Send, accept and process five separate mailbox requests for carrier snapshot add operations.

Use a subscriber list containing at least three subscribers, one of which is invalid.

Requirement to be validated:

IMH must read a snapshot add request from the input mailbox

IMH must recognize it as a carrier snapshot add request

IMH must call the appropriate SDM routine to continue processing and provide it with the correct data types and the database update record itself.

IMH must be able to perform the above steps five successive times.

SDM_update_data must receive a packet header, data header, and update data filled in with accurate information so that it can update the database.

SDM must call SL_fulfill_subscription to forward a snapshot update to the subscribers.

SDM must perform the above steps five times successively.

OMH must forward copies of the newly added snapshots to the valid subscribers’ mailboxes.

Having an invalid subscriber on the list will not cause a crash or processing problems.

Test Tools, Drivers, or Special Conditions:

The EudoraLite mail package was used to send the request. The SDB library of SQL statements embedded in C code was used to retrieve the snapshot from the Oracle v.7.2 database. The SQLPlus utility was used to view the database and verify results. The MBX library, based on the Distinct mail protocol software, was used to extract the message from the mailbox for processing and send results to the requester’s mailbox.

Input Data:

Five database update requests, with valid data, and USDOT numbers not yet existing in the database.

Expected Outcome:

The five carrier snapshots will be written to the database.

The two valid subscribers will receive copies of the five snapshots in their mailboxes.

The invalid subscriber will not cause processing problems. The mail system will simply handle it like any other invalid address.

Test Procedure Steps:

Send five valid carrier snapshot update requests to the IMH input mailbox.

Verify that the subscription list in the database contains three subscribers, two of which are valid and one of which is invalid.

When processing is completed, verify, using SQLPlus, that the five snapshots were added to the database.

Verify that both valid subscribers received copies of the five snapshots in their mailboxes.

Verify that the invalid subscriber did not cause processing problems.

�System Functionality Test Report

					

System ID: 	Carrier Update

SYS ID: SYS-CU-006

Version Control ID: APL V01-B02			Test Seq Number: 	01

Test Conductor:	Grace McGonnigal			Test Date: 10/1//96

Purpose of Test:

To verify that the function executes as planned.

Actual Results:

The five carrier snapshots were correctly added to the database.

Copies of the five snapshots were received in the two valid subscribers’ mailboxes.

The invalid subscriber case caused a problem due to a bug in MBX, which is being corrected.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�System Functionality Test Plan

				

System ID:	Carrier Update

SYS ID: SYS-CU-007

Version Control ID: APL V01-B02	

Affected CSCI:	IMH, SDM, OMH

System Function:

Send, accept and process five separate mailbox requests for carrier snapshot add operations when five add requests are already in the queue when IMH processing starts.

Use a subscriber list containing at least three subscribers, one of which is invalid.

Requirement to be validated:

IMH must read a snapshot add request from the input mailbox

IMH must recognize it as a carrier snapshot add request

IMH must call the appropriate SDM routine to continue processing and provide it with the correct data types and the database update record itself.

IMH must be able to process five queued requests immediately upon being initialized, and then perform the above steps five successive times for additional update records.

SDM_update_data must receive a packet header, data header, and update data filled in with accurate information so that it can update the database.

SDM must call SL_fulfill_subscription to forward a snapshot update to the subscribers.

SDM must perform the above steps ten times successively.

OMH will forward mail messages containing copies of the newly added snapshots to the valid subscribers.

Having an invalid subscriber on the list will not cause a crash or processing problems.

Test Tools, Drivers, or Special Conditions:

The EudoraLite mail package was used to send the request. The SDB library of SQL statements embedded in C code was used to retrieve the snapshot from the Oracle v.7.2 database. The SQLPlus utility was used to view the database and verify results. The MBX library, based on the Distinct mail protocol software, was used to extract the message from the mailbox for processing and to forward results to the requester’s mailbox.

Input Data:

Ten database update requests, with valid data, and USDOT numbers not yet existing in the database.

Expected Outcome:

The ten carrier snapshots will be written to the database.

The two valid subscribers will receive copies of the ten snapshots in their mailboxes.

The invalid subscriber will not cause processing problems. The mail system will simply handle it like any other invalid address.

Test Procedure Steps:

Send ten valid carrier snapshot update requests to the IMH input mailbox.

Verify that the subscription list in the database contains three subscribers, two of which are valid and one of which is invalid.

When processing is completed, verify, using SQLPlus, that the ten snapshots were added to the database.

Verify that both valid subscribers received copies of the five snapshots in their mailboxes.

Verify that the invalid subscriber did not cause processing problems.

Analysis Procedures:

�System Functionality Test Report

					

System ID: 	Carrier Update

SYS ID: SYS-CU-007

Version Control ID: APL V01-B02			Test Seq Number: 	01

Test Conductor:	Grace McGonnigal			Test Date: 10/1//96

Purpose of Test:

To verify that the function executes as planned.

Actual Results:

The ten carrier snapshots were correctly added to the database.

Copies of the ten snapshots were received in the two valid subscribers’ mailboxes.

The invalid subscriber case caused a problem due to a bug in MBX, which is being corrected.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�System Functionality Test Plan

				

System ID: Accounting	

SYS ID: SYS-AC-001

Version Control ID: APL V01-B02	

Affected CSCI:	ADM/ACT, IMH, SDM

System Function:

Send, accept, and process a single request to create an organization record in the database.

The message should identify an organization not yet contained in the database.

The message should add one or more initial users to the database as part of the organization.

Requirement to be validated:

IMH_read_account_request must correctly parse the create organization message received in the input mailbox, and copy each piece of information contained in the message into the appropriate structures for further processing.

ADM_ACCT_create_org_account must verify that the requester has the privileges to create the organization record.

ADM_ACCT_create_org_account must create the organization record with a unique identification label.

ADM_ACCT_create_user_account must add any users identified in the create organization message to the database as a part of that organization.

Test Tools, Drivers, or Special Conditions:

The EudoraLite mail package was used to send the request. The SDB library of SQL statements embedded in C code was used to retrieve the snapshot from the Oracle v.7.2 database. The SQLPlus utility was used to view the database and verify results. The MBX library, based on the Distinct mail protocol software, was used to extract the message from the mailbox for processing and to forward results to the requester’s mailbox.

Input Data:

A valid request to create one organization with two initial users was used as input.

Expected Outcome:

The organization record and two user records will be correctly written to the database.

Test Procedure Steps:

Set up the message in EudoraLite. Send it to the IMH input mailbox.

When processing is completed, use the SQLPlus utility to view the organization record and the two user records in the database.

Analysis Procedures:

�System Functionality Test Report

					

System ID: 	Accounting

SYS ID: SYS-AC-001

Version Control ID: APL V01-B02				Test Seq Number: 	01

Test Conductor:	Grace McGonnigal			Test Date: 10/1//96

Purpose of Test:

To verify that the function executes as planned.

Actual Results:

The organization record was written to the database and filled in with the proper information.

The two user records were written to the database and were filled in properly.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�System Functionality Test Plan

				

System ID: Accounting	

SYS ID: SYS-AC-002

Version Control ID: APL V01-B02	

Affected CSCI:	ADM/ACT, IMH, SDM

System Function:

Send, accept, and process a request to add one or more users to the database as part of an existing organization.

Verify that the users were correctly entered into the database.

Requirement to be validated:

IMH_read_account_request must correctly parse the create user message received in the input mailbox, and copy each piece of information contained in the message into the appropriate structures for further processing.

ADM_ACCT_create_user must verify that the user’s organization already exists in the database.

ADM_ACCT_create_user must verify that the requester is valid and is associated with the organization.

ADM_ACCT_update_user_account must verify that the requester has the privileges to add the user record to the database.

ADM_ACCT_create_user must verify that the user does not already exist in the database as part of that organization.

ADM_ACCT_create_user must correctly add the user to the database.

Test Tools, Drivers, or Special Conditions:

The EudoraLite mail package was used to send the request. The SDB library of SQL statements embedded in C code was used to retrieve the snapshot from the Oracle v.7.2 database. The SQLPlus utility was used to view the database and verify results. The MBX library, based on the Distinct mail protocol software, was used to extract the message from the mailbox for processing and to forward results to the requester’s mailbox.

Input Data:

The input was a valid create user message containing data for two new users for a previously existing organization. The message contained a valid requester id for that organization.

Expected Outcome:

Records for the two new users will be correctly written to the database.

Test Procedure Steps:

Set up the message in EudoraLite. Send it to the IMH input mailbox.

When processing is completed, use SQLPlus to verify that the new user records were correctly entered in the database.

Analysis Procedures:

�System Functionality Test Report

					

System ID: 	Accounting

SYS ID: SYS-AC-002

Version Control ID: APL V01-B02				Test Seq Number: 	01

Test Conductor:	Grace McGonnigal			Test Date: 10/1//96

Purpose of Test:

To verify that the function executes as planned.

Actual Results:

Records for the two new users were correctly added to the database.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�System Functionality Test Plan

				

System ID: Accounting	

SYS ID: SYS-AC-003

Version Control ID: APL V01-B02	

Affected CSCI:	ADM/ACT, IMH, SDM

System Function:

Send, accept, and process a request to update an organization already existing in the database

The message will contain a valid requester id and the requester will have the necessary privileges.

Requirement to be validated:

IMH_read_account_request must correctly parse the update organization message received in the input mailbox, and copy each piece of information contained in the message into the appropriate structures for further processing.

ADM_ACCT_update_org_account must verify that the organization already exists in the database.

ADM_ACCT_update_org_account must verify that the requester is valid and is associated with the organization.

ADM_ACCT_update_user_account must verify that the requester has the privileges to update the organization record.

ADM_ACCT_update_org_account must correctly make the requested modifications to the organization record.

Test Tools, Drivers, or Special Conditions:

The EudoraLite mail package was used to send the request. The SDB library of SQL statements embedded in C code was used to retrieve the snapshot from the Oracle v.7.2 database. The SQLPlus utility was used to view the database and verify results. The MBX library, based on the Distinct mail protocol software, was used to extract the message from the mailbox for processing and to forward results to the requester’s mailbox.

Input Data:

Input was a message containing an existing organization, a valid requester id, and a request to modify the telephone number and part of the mailing address.

Expected Outcome:

The telephone number and mailing address will be updated for that organization.

Test Procedure Steps:

Set up the message in EudoraLite. Send it to the IMH input mailbox.

Analysis Procedures:

�System Functionality Test Report

					

System ID: 	Accounting

SYS ID: SYS-AC-003

Version Control ID: APL V01-B02				Test Seq Number: 	01

Test Conductor:	Grace McGonnigal			Test Date: 10/1//96

Purpose of Test:

To verify that the function executes as planned.

Actual Results:

The organization record was modified as requested in the database.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�System Functionality Test Plan

System ID: Accounting	

SYS ID: SYS-AC-004

Version Control ID: APL V01-B02	

Affected CSCI:	ADM/ACT, IMH, SDM

System Function:

Send, accept, and process a message containing a request to update user information.

The input message should contain a valid organization, requester, and user.

Requirement to be validated:

IMH_read_account_request must correctly parse the update organization message received in the input mailbox, and copy each piece of information contained in the message into the appropriate structures for further processing.

ADM_ACCT_update_user_account must verify that the user’s organization already exists in the database.

ADM_ACCT_update_user_account must verify that the requester is valid and is associated with the organization.

ADM_ACCT_update_user_account must verify that the requester has the privileges to update the user record.

ADM_ACCT_update_user_account must verify that the user already exists in the database.

ADM_ACCT_update_user_account must make the requested modifications to the user record.

Test Tools, Drivers, or Special Conditions:

The EudoraLite mail package was used to send the request. The SDB library of SQL statements embedded in C code was used to retrieve the snapshot from the Oracle v.7.2 database. The SQLPlus utility was used to view the database and verify results. The MBX library, based on the Distinct mail protocol software, was used to extract the message from the mailbox for processing and send results to the requester’s mailbox.

Input Data:

The input was a message requesting that the telephone number, extension, and city be changed for one user, and that the country be changed for another user.

Expected Outcome:

All requested changes will be made to the two users records in the database.

Test Procedure Steps:

Use SQLPlus to view the records for the two users. Verify that the information in their fields is different from the information in the update user request.

Set up the message in EudoraLite. Send it to the IMH input mailbox.

When processing is completed, use the SQLPlus utility to verify that the records for the two users have changed appropriately.

Analysis Procedures:

�System Functionality Test Report

					

System ID: 	Accounting

SYS ID: SYS-AC-004

Version Control ID: APL V01-B02				Test Seq Number: 	01

Test Conductor:	Grace McGonnigal			Test Date: 10/1//96

Purpose of Test:

To verify that the function executes as planned.

Actual Results:

The requested changes were made to the two user records.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�System Functionality Test Plan

				

System ID: Accounting	

SYS ID: SYS-AC-005

Version Control ID: APL V01-B02	

Affected CSCI:	ADM/ACT, IMH, SDM

System Function:

Send, accept, and process a request to delete a user.

The request message will contain a user id existing in the database, and a valid requester.

The request message will contain the correct organization id for the user.

Requirement to be validated:

IMH_read_account_request must correctly parse the delete user message received in the input mailbox, and copy each piece of information contained in the message into the appropriate structures for further processing.

ADM_ACCT_delete_user_account must verify that the requester has the privileges to delete the user record.

ADM_ACCT_delete_user_account must verify that the requester is not deleting his own record.

ADM_ACCT_delete_user_account must remove the users identified from the database.

Test Tools, Drivers, or Special Conditions:

The EudoraLite mail package was used to send the request. The SDB library of SQL statements embedded in C code was used to retrieve the snapshot from the Oracle v.7.2 database. The SQLPlus utility was used to view the database and verify results. The MBX library, based on the Distinct mail protocol software, was used to extract the message from the mailbox for processing and to forward results to the requester’s mailbox.

Input Data:

Input consisted of a delete user request that specified one valid user in a valid organization. The requester was also valid, and had the privileges to delete users.

Expected Outcome:

The user will be deleted.

Test Procedure Steps:

Using the SQLPlus utility, verify that the user exists in the database.

Set up the message in EudoraLite. Send it to the IMH input mailbox.

Using the SQLPlus utility, verify that the user no longer exists in the database.

Analysis Procedures:

�System Functionality Test Report

					

System ID: 	Accounting

SYS ID: SYS-AC-005

Version Control ID: APL V01-B02				Test Seq Number: 	01

Test Conductor:	Grace McGonnigal			Test Date: 10/1//96

Purpose of Test:

To verify that the function executes as planned.

Actual Results:

The correct user was deleted from the database.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�System Functionality Test Plan

				

System ID: Accounting	

SYS ID: SYS-AC-006

Version Control ID: APL V01-B02	

Affected CSCI:	ADM/ACT, IMH, SDM

System Function:

Send, accept, and process a request to delete an organization.

The message will contain an organization identifier existing in the database, and will have a valid requester with the privileges to delete an organization.

Requirement to be validated:

IMH_read_account_request must correctly parse the create organization message received in the input mailbox, and copy each piece of information contained in the message into the appropriate structures for further processing.

ADM_ACCT_delete_org_account must verify that the requester has the privileges to delete the organization record.

ADM_ACCT_delete_org_account must verify the organization exists in the database.

ADM_ACCT_delete_org_account must delete the organization.

Test Tools, Drivers, or Special Conditions:

The EudoraLite mail package was used to send the request. The SDB library of SQL statements embedded in C code was used to retrieve the snapshot from the Oracle v.7.2 database. The SQLPlus utility was used to view the database and verify results. The MBX library, based on the Distinct mail protocol software, was used to extract the message from the mailbox for processing and to forward results to the requester’s mailbox.

Input Data:

Input was a message containing a valid organization identifier and a valid requester.

Expected Outcome:

The organization record will be deleted from the database.

Test Procedure Steps:

Using SQLPlus, verify that the organization exists in the database.

Set up the message in EudoraLite. Send it to the IMH input mailbox.

Using SQLPlus, verify that the organization no longer exists in the database.

Analysis Procedures:

�System Functionality Test Report

					

System ID: 	Accounting

SYS ID: SYS-AC-006

Version Control ID: APL V01-B02				Test Seq Number: 	01

Test Conductor:	Grace McGonnigal				Test Date: 10/1//96

Purpose of Test:

To verify that the function executes as planned.

Actual Results:

The requested organization was deleted from the database.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�System Functionality Test Plan

				

System ID: Subscription List	

SYS ID: SYS-SL-001

Version Control ID: APL V01-B02	

Affected CSCI:	SLP, IMH, SDM

System Function:

Send, accept, and process a single request to create a subscription record in the database.

The subscription request message should be for a subscriber not yet included in the database.

At least two USDOT numbers should be entered in the parameter list.

Requirement to be validated:

IMH_read_subscription_request must correctly parse the create subscription message received in the input mailbox, and copy each piece of information contained in the message into the appropriate structures for further processing.

SLP_create must check whether the subscription already exists in the database.

SLP_create must create the subscription using the sender’s identifier as the user id.

SLP_create must correctly add the USDOT numbers to the subscriber parameter table in the database.

Test Tools, Drivers, or Special Conditions:

The EudoraLite mail package was used to send the request. The SDB library of SQL statements embedded in C code was used to retrieve the snapshot from the Oracle v.7.2 database. The SQLPlus utility was used to view the database and verify results. The MBX library, based on the Distinct mail protocol software, was used to extract the message from the mailbox for processing and to forward results to the requester’s mailbox.

Input Data:

A valid request to add a subscriber was used as input. Two USDOT numbers were placed in the parameter list.

Expected Outcome:

The subscriber will be added to the database.

Test Procedure Steps:

Set up the message in EudoraLite. Send it to the IMH input mailbox.

When processing is completed, use the SQLPlus utility to view the subscription record.

Analysis Procedures:

System Functionality Test Report

					

System ID: 	Subscription List

SYS ID: SYS-SL-001

Version Control ID: APL V01-B02				Test Seq Number: 	01

Test Conductor:	Grace McGonnigal			Test Date: 10/1//96

Purpose of Test:

To verify that the function executes as planned.

Actual Results:

The subscriber was correctly entered in the database subscription table.

The subscriber’s selected USDOT numbers were correctly entered into the subscriber parameter list.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�System Functionality Test Plan

				

System ID: Subscription List	

SYS ID: SYS-SL-002

Version Control ID: APL V01-B02	

Affected CSCI:	SLP, IMH, SDM, OMH

System Function:

Send, accept, and process a single request to add a carrier snapshot to the database.

The subscription table in the database should contain at least one valid subscriber who will receive a copy of the snapshot.

Requirement to be validated:

IMH_read_subscription_request must correctly parse the create subscription message received in the input mailbox, and copy each piece of information contained in the message into the appropriate structures for further processing.

SLP_monitor must read the subscription table.

SLP_monitor must call SDM to extract the new snapshot from the database and send copies to all subscribers.

SLP_create must check whether the subscription already exists in the database.

SLP_create must create the subscription using the sender’s identifier as the user id.

Test Tools, Drivers, or Special Conditions:

The EudoraLite mail package was used to send the request. The SDB library of SQL statements embedded in C code was used to retrieve the snapshot from the Oracle v.7.2 database. The SQLPlus utility was used to view the database and verify results. The MBX library, based on the Distinct mail protocol software, was used to extract the message from the mailbox for processing and to forward results to the requester’s mailbox.

Input Data:

A valid request to add a carrier snapshot was used as input.

Expected Outcome:

The carrier snapshot will be added to the database.

All valid subscribers in the subscription table of the database will receive copies of the carrier snapshot.

Test Procedure Steps:

Set up the message in EudoraLite. Send it to the IMH input mailbox.

When processing is completed, use the SQLPlus utility to view the new carrier snapshot record in the database.

Read each subscribers mailbox to verify that a copy of the carrier snapshot was received.

Analysis Procedures:

�System Functionality Test Report

					

System ID: 	Subscription List

SYS ID: SYS-SL-002

Version Control ID: APL V01-B02				Test Seq Number: 	01

Test Conductor:	Grace McGonnigal			Test Date: 10/1//96

Purpose of Test:

To verify that the function executes as planned.

Actual Results:

The carrier snapshot was added to the database.

Each subscriber received a copy of the carrier snapshot.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�System Functionality Test Plan

				

System ID: Subscription List	

SYS ID: SYS-SL-003

Version Control ID: APL V01-B02	

Affected CSCI:	SLP, IMH, SDM, OMH

System Function:

Send, accept, and process a single request retrieve a carrier snapshot and add the USDOT number to the requester’s parameter list.

The message should contain a valid USDOT number contained in the database.

The requester should already be listed as a subscriber in the subscription table, and should have one or more USDOT numbers already set up in the subscriber parameters table. The requested USDOT number should not yet be in the subscriber parameters table, however.

The user_seq value used in the message must match that in the subscription record.

Requirement to be validated:

IMH_read_subscription_request must correctly parse the create subscription message received in the input mailbox, and copy each piece of information contained in the message into the appropriate structures for further processing.

IMH_translate_message must recognize the input message as a request to retrieve the snapshot and append the USDOT number to the subscriber’s parameter list.

SLP_create must check whether the subscription already exists in the database.

SLP_create must call SLP_append to append the requested USDOT number to the subscriber’s parameter list.

Test Tools, Drivers, or Special Conditions:

The EudoraLite mail package was used to send the request. The SDB library of SQL statements embedded in C code was used to retrieve the snapshot from the Oracle v.7.2 database. The SQLPlus utility was used to view the database and verify results. The MBX library, based on the Distinct mail protocol software, was used to extract the message from the mailbox for processing and to forward results to the requester’s mailbox.

Input Data:

A valid request to retrieve a carrier snapshot and add the USDOT number to the subscriber’s parameter list was used. The format was as follows:

R

A=111

PTest1

where PTest1 is the user_seq value.

Expected Outcome:

A copy of the carrier snapshot will be sent to the requester’s mailbox.

The USDOT number will be added to the requester’s parameter list.

Test Procedure Steps:

Set up the message in EudoraLite. Send it to the IMH input mailbox.

When processing is completed, use the SQLPlus utility to view the subscriber parameters table and verify that the requested USDOT number has been added.

Read the requester’s mailbox to verify that a copy of the carrier snapshot was received.

Analysis Procedures:

System Functionality Test Report

					

System ID: 	Subscription List

SYS ID: SYS-SL-003

Version Control ID: APL V01-B02				Test Seq Number: 	01

Test Conductor:	Grace McGonnigal			Test Date: 11/5//96

Purpose of Test:

To verify that the function executes as planned.

Actual Results:

The USDOT number was added to the requester’s subscriber parameter list in the database.

The requester received a copy of the carrier snapshot.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�System Performance and Stress Test Plan

Introduction

This section describes the performance tests carried out on the CVIEW system to determine its readiness for supporting roadside data exchange operations. The performance attributes of the CVIEW system may be divided into four areas: online query, subscription fulfillment, subscription download and client database update. Each of these areas will be characterized.

The purpose of system performance and stress testing is to identify and mitigate performance factors that might prevent successful operation of the CVIEW system. A variety of techniques, including measurement techniques and the use of analytical and queueing models, have been used to support this type of testing. Performance testing is used to identify and characterize fundamental performance factors while analytical and queuing models are used to extend these empirical results to support predictive estimates when temporal and system testing resources are limited.

Scope

The CVIEW System’s performance will be characterized in two separate functional areas. The CVIEW system is required to perform two distinct functions, first database updates and distribution of data to subscribers based on them, and second, responding to queries from clients.

The process of updating and distributing data from the CVIEW database can be analyzed into three steps for the purpose of performance testing. The first is subscription fulfillment, the second, subscription download, and the third is client database update.

Subscription fulfillment is the process of updating the CVIEW database with data obtained from external sources, e.g., SAFER, and posting data changes to users’ mail boxes in accordance with their subscriptions. The performance test of this process is described in section 2.3, Subscription Fulfillment.

Subscription download is the process of transferring the updated data from a user’s mail box to the user’s client machine. It is exclusive of the process of updating the client’s database with the transferred data. The performance test of this process is described in section 2.4, Subscription Download.

Client database update is the process of using the transferred update data to alter the client’s local database and thus make the information available to the user. The performance test of this process is described in section 2.5, Client Database Update.

In addition to the processes described above, the CVIEW system will be able to accept requests for specific carrier, vehicle, and driver snapshots and return them to the requesting client. The performance test, as it relates to carrier snapshot processing, is described in section 2.6, Query Processing.

Subscription Fulfillment Test

To Be Supplied (TBS)

Subscription Download Test

Subscription Size Characterization; Download Response Time Test

The size of the subscription data to be downloaded and the speed of the network on which it is transferred will be the two primary factors governing download response time. In this section, the size of the subscription data and the response time resulting from its transference over a 28.8K (kilo-bits per second) connection are estimated. This transfer rate was selected as a representative dial-up connection.

Method

A subscription file is generated from an update file in several steps:

The update snapshots for carriers that fit the user’s subscription are selected. Our tests assumed that users will be interested in all carriers.

A selected snapshot is checked against its current state in the CVIEW database to determine what changes have occurred. Only if the snapshot has changed significantly is it selected for the user’s subscription. The selection algorithm used is described below.

The selected snapshots are written out to disk in the transfer format. Only the information required by the user, called his view, is stored on disk. ASPEN users will receive data based on the ISS view.

The file containing the snapshots is compressed and stored in the user’s mailbox.

To predict the results of the first two steps, the selection algorithm was run against several MCMIS update files. This was used, along with statistics from past MCMIS updates to predict the number of records that would typically be sent to a user.

To predict the results of the last two steps, various numbers of snapshots were selected from the CVIEW database, written to disk in “application file format” and compressed. The resulting file size was measured and the results were used to predict the size of a transfer file given the number of records to be sent.

To predict the transfer time, the number of bits for a particular expected file size was calculated based on the assumption of 10 bits per byte (to account for communication overhead).

Data and Analysis

The expected size of a weekly MCMIS update was estimated based on 42 weeks of MCMIS updates occurring between 4/30/96 and 3/9/97. The average number of records per update was 39,709 and the standard deviation was 19,387. Figure 3 illustrates the expected probability density for a MCMIS update record count.

� EMBED Excel.Chart.5 \s ���

The expected size of an ISS update to be sent to a MCSAP site was estimated as a function of the size of the MCMIS update.

Records were chosen for an ISS update if any of the following changes occurred:

The update moves the record into a new category, either INSPECT, OPTIONAL or PASS

The update increases the ISS score by 10 or more points.

Any change to the NAME, DBA NAME, or the address fields, including ADDRESS, CITY, STATE, ZIP and ZIP+4.

ISS updates from four weekly MCMIS files were chosen using the selection criteria listed above. These were used to derive an ISS update record count formula based on the size of a MCMIS update. Figure 4 illustrates the results.

� EMBED Excel.Chart.5 \s ���

Using the mean and standard deviation for MCMIS updates and the correlation function characterized in Figure 4, the expected record counts for ISS updates was estimated and is shown in Figure 5. The average update is estimated to be approximately 3,300 records/week, while the 90th percentile is approximately 4,400 records/week.

� EMBED Excel.Chart.5 \s ���

The size of a ISS update record may vary as a result of varying field lengths contained within the record. As such, the length of an ISS update file will vary in size. In addition, the application of compression techniques will introduce additional file size variability. To estimate the size of an ISS update file, random samples of ISS update records were assembled, formatted in the ISS view and compressed. Based on the linear relationship illustrated in Figure 6, ISS update file sizes were estimated.

� EMBED Excel.Chart.5 \s ���

Results

Based on the results of analysis from section 2.4.1.2, response time estimates for the download of an ISS update from CVIEW to a user, e.g., an ASPEN system, were made. The assumptions were:

The connection between CVIEW and the receiving system is established via a 28.8 K dial-up line.

Communication overhead is estimated at about 2 bits per byte, for a total of 10 bits per byte.

MIME encoding (for SMTP transmission of binary data) adds about 1/3 to the file size.

The 28.8 K communications link between the receiving system and CVIEW is the limiting performance factor. This assumption is verified in section 2.4.2, Server Performance and Response Time.

Figure 7 shows the expected download time for weekly ISS update files given the assumptions and results stated above.

� EMBED Excel.Chart.5 \s ���

Server Performance and Response Time Test

The purpose of this test is to ensure that the CVIEW server is correctly configured to provide the speed and capacity required to support subscription download operations to no fewer than 200 MCSAP sites. Test results are TBS.

Dependent Variables

The following performance indicators will be measured and analyzed under permutations of the independent variables listed in the next section during subscription download processing.

 Response Time

The time taken to download a subscription from the server to the client machine and store it on the client’s disk system exclusive of the time required to make a network connection or update the client’s database.

It is expected (and an objective of this test is to confirm) that for dial up users on a 28.8 K modem, the network download time will be the bottleneck, not the CVIEW server. Response time should therefore remain flat over a wide range of users when connected over dial-up telephone lines. For network connections, the bottleneck will more likely be the CVIEW server and thus response times should be more variable.

RAID Disk Utilization

The transaction rate, transaction queue depth, and data transfer rate will be measured or predicted.

CPU Utilization

The percent of non-idle CPU time will be measured or predicted.

Memory Utilization

The memory utilization by relevant processes and the system page fault rate will be measured or predicted.

Independent Variables

The following loading and configuration factors will be used in various permutations to determine their affect on the dependent variables. Not all possible experiments will be run; the test design, described below, specifies which experiments will be conducted. From these experiments an analytic model will be used to predict the outcome of those experiments not run. The results of the analytic model will form the basis for a queuing model which will be used to simulate actual operations under various conditions.

Simultaneous Clients and Clients Per Workstation

Simultaneous clients refers to the number of clients simultaneously connected to CVIEW downloading subscription data. Performance under 1, 2, 4, 6, 10, 20 and 50 clients should be measured or reasonably predicted by the analytic model. Up to 10 clients, each on a separate workstation, can be reasonably measured. Test involving larger numbers of clients may have to utilize several clients per workstation or be derived entirely analytically.

Subscription File Size

Subscription files of 3,000 and 4,250 ISS records will be used. The 3,000 is the mean number of records and 4,250 is the 90th percentile. Measurements will be made with the 90th percentile case first. Results of that test will dictate whether or not it is worth while executing the mean case.

Connectivity Characteristics

Two connectivity cases using LAN connectivity at a 56K bandwidth and dial up connectivity using a 28.8K bandwidth will be considered. The LAN connection will essentially remove the network as a bottleneck, while the 28.8 dial up case will represent the extreme in which the network is the bottleneck. Most testing will be done over the LAN; a few dial-up cases will be used to substantiate the analytic model. Intermediate cases will be estimated from the analytic model. At least one stress test utilizing the 800 number dial up will be conducted.

Mail Server Configuration: NT Mail Verses Microsoft Exchange

The mail server software will be a significant factor in the performance of the system during subscription download. Primary testing will be performed using CVIEW’s existing NT Mail system. Test cases will also be executed using Microsoft Exchange to determine if it provides improved performance or reliability.

NT Mail Thread Count

The NT Mail server allows the maximum number of threads it will support to be configured. Tests involving variable numbers of concurrent clients will be executed to determine the optimal NT Mail thread count.

Number of Mail Messages

Testing will be done primarily with only one mail message in the client’s mail box. Given that users download their subscriptions regularly this is the most realistic case. Tests will be run with a greater numbers per mail box to determine the affect they have on performance.

Client Database Update

	Results TBS

ASPEN and CVIEW API

	Results TBS

SAFER and CVIEW Visual User Environment (SafeVUE)

	Results TBS

Query Processing

	Results TBS

	�

Appendix C - Integration Test

CVIEW System

Integration Test Plans and Test Reports�Integration Test Plan

				

Integration ID:	Carrier Snapshot

ITP ID: IMH-CS-001

Version Control ID: APL V01-B02	

Affected CSCI:	IMH

Integration Function:

Detect, accept and process a single mailbox request for a carrier snapshot using a USDOT# as input in pseudo-EDI format;

Send results to SDM.

Requirement to be validated:

IMH must read a snapshot request from the input mailbox

IMH must recognize it as a carrier snapshot request

IMH must parse the EDI format request to obtain the DOT number

IMH must fill in the request structure with the DOT number

IMH must call the appropriate SDM routine to continue processing

Test Tools, Drivers, or Special Conditions:

The EudoraLite mail package was used to send the request. The MBX_Read routine was used to extract a message from the mailbox.

Input Data:

An input file in EDI format was sent to IMH via the Eudora mail package:

ST*285*000010010

BGN*28*54321*951117*0800*GM

NM1*41*1*ECKEL*JOHN*MORRIS***57*CSI

NX1*MC

N9*2I*1

LM*FH

LQ*T07*Q106

LM*FH

LQ*T10*Q1

LM*FH

LQ*T10*Q200

REF*MCI*0000004

Expected Outcome:

IMH will call SDM_retrieve_safety_data with the packet header request type correctly filled with SAF_TRANS_DATA_REQUEST. The request structure will contain the correct DOT number in the query criteria.

The carrier snapshot for DOT number 4 should be received in text form in the requester’s mailbox.

Test Procedure Steps:

Set up the message in Eudora. Send it to the IMH input mailbox.

Check packet header, request header, and request passed to SDM_retrieve_safety_data to verify that data types and DOT number are set correctly.

Analysis Procedures:

�Integration Test Report

					

Integration ID: 	Carrier Snapshot

ITP ID: IMH-CS-001

Version Control ID: APL V01-B02				Test Seq Number: 	01

Test Conductor:	Grace McGonnigal			Test Date: 7/1//96

Purpose of Test:

To verify that the function executes as planned.

Actual Results:

Data structures for packet header, request header, and request were properly filled in and passed to SDM_retrieve_safety_data for the request.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Integration Test Plan

Integration ID:	Carrier Snapshot

ITP ID: SDM-CS-001

Version Control ID: APL V01-B02	

Affected CSCI:	SDM

Integration Function:

Detect, accept and process a single carrier snapshot request using a USDOT# as input

Send results to OMH.

Requirement to be validated:

SDM receives the packet header, request header, and request properly filled in with data types and the desired DOT number.

SDM calls OMH with the packet_header, request header, and send request properly filled in.

Test Tools, Drivers, or Special Conditions:

None.

Input Data:

Packet header, request header, and request are received as input.

Expected Outcome:

OMH is called with data structures properly filled in, and is equipped with the information needed to query the database and send results back to the requester.

Test Procedure Steps:

After a valid carrier snapshot request is sent via Eudora to IMH, verify that SDM_retrieve_safety_data receives the request with the correct return address, data type and DOT number.

Verify that OMH_send_safety_data is called with data structures filled in with the correct return address, data type and DOT number.

Analysis Procedures:

�Integration Test Report

					

Integration ID: 	Carrier Snapshot

ITP ID: SDM-CS-001

Version Control ID: APL V01-B02			Test Seq Number: 	01

Test Conductor:	Grace McGonnigal			Test Date: 7/1//96

Purpose of Test:

To verify that the function executes as planned.

Actual Results:

SDM_retrieve_safety_data received all information necessary to complete the retrieval.

OMH_send_safety_data was given all information necessary to complete the retrieval.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Integration Test Plan

				

Integration ID:	Carrier Snapshot

ITP ID: OMH-CS-001

Version Control ID: APL V01-B02	

Affected CSCI:	OMH

Integration Function:

Detect, accept and process a single carrier snapshot request using a USDOT# as input

Send results to a single requester’s mailbox.

Requirement to be validated:

OMH must receive the proper carrier snapshot request from SDM_retrieve_safety_data.

OMH must query the database and retrieve a carrier snapshot, provided that the DOT number is a valid one.

OMH must send the snapshot to the requester’s mailbox in text form.

Test Tools, Drivers, or Special Conditions:

The MBX_Send routine was used to send the snapshot back to the requester’s mailbox.

SDB_get_view was called to retrieve the snapshot from the database.

Input Data:

The packet header, request header, and send request are received by OMH as inputs.

Expected Outcome:

OMH will successfully query the database, retrieve the requested snapshot, and send it to the requester’s mailbox.

Test Procedure Steps:

Verify that OMH_send_safety_data receives the packet header, request header, and send request properly filled in.

Verify that OMH_output_query_database successfully calls SDB to retrieve the snapshot.

Verify that OMH_output_message_generator successfully calls MBX_Send to forward the snapshot to the requester.

Read the snapshot for the desired DOT number from the requester’s mailbox.

Analysis Procedures:

�Integration Test Report

					

Integration ID: 	Carrier Snapshot

ITP ID: OMH-CS-001

Version Control ID: APL V01-B02			Test Seq Number: 	01

Test Conductor:	Grace McGonnigal			Test Date: 7/1//96

Purpose of Test:

To verify that the function executes as planned.

Actual Results:

The desired snapshot, for DOT number 4, was received in the requester’s mailbox, and was read using the EudoraLite mail package.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:______________

�Integration Test Plan

				

Integration ID:	Carrier Snapshot

ITP ID: IMH-CS-002

Version Control ID: APL V01-B02	

Affected CSCI:	IMH

Integration Function:

Detect, accept and process five mailbox requests for carrier snapshot using USDOT numbers as input in pseudo-EDI format;

Send results to SDM.

Requirement to be validated:

IMH must read a snapshot request from the input mailbox

IMH must recognize it as a carrier snapshot request

IMH must parse the EDI format request to obtain the DOT number

IMH must fill in the request structure with the DOT number

IMH must call the appropriate SDM routine to continue processing

IMH must loop through the above sequence of steps four more times provided that five snapshot requests are successively queued in the input mailbox with no other intervening messages.

Test Tools, Drivers, or Special Conditions:

The EudoraLite mail package was used to send the requests to the input mailbox. The MBX_Read routine was used to extract messages from the mailbox.

Input Data:

Five mail messages, with valid carrier snapshot requests.

Expected Outcome:

IMH will call SDM_retrieve_safety_data five successive times with the packet header request type correctly filled with SAF_TRANS_DATA_REQUEST. The request structure will contain the correct DOT number in the query criteria.

The carrier snapshot for the five DOT numbers should be received in text form in the requester’s mailbox.

Test Procedure Steps:

Start IMH process.

Set up the messages in Eudora. Send them to the IMH input mailbox.

Check packet header, request header, and request passed to SDM_retrieve_safety_data to verify that data types and DOT number are set correctly for each of the five messages.

Analysis Procedures:

�Integration Test Report

					

Integration ID: 	Carrier Snapshot

ITP ID: IMH-CS-002

Version Control ID: APL V01-B02			Test Seq Number: 	01

Test Conductor:	Grace McGonnigal			Test Date: 7/1//96

Purpose of Test:

To verify that the function executes as planned.

Actual Results:

Data structures for packet header, request header, and request were properly filled in and passed to SDM_retrieve_safety_data for each of the five messages.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Integration Test Plan

				

Integration ID:	Carrier Snapshot

ITP ID: SDM-CS-002

Version Control ID: APL V01-B02	

Affected CSCI:	SDM

Integration Function:

Detect, accept and process five carrier snapshot requests using USDOT numbers as input;

Send results to OMH.

Requirement to be validated:

For each of five successive carrier snapshot requests:

SDM receives the packet header, request header, and request properly filled in with data types and the desired DOT number.

SDM calls OMH with the packet_header, request header, and send request properly filled in.

SDM performs the above steps five times for five successive valid carrier snapshot requests forwarded to it by IMH.

Test Tools, Drivers, or Special Conditions:

None

Input Data:

Packet header, request header, and request are received as input.

Expected Outcome:

OMH is called with data structures properly filled in, and is equipped with the information needed to query the database and send results back to the requester.

Test Procedure Steps:

For each of the five carrier snapshot requests forwarded from IMH to SDM:

Verify that SDM_retrieve_safety_data receives the request with the correct return address, data type and DOT number.

Verify that OMH_send_safety_data is called with data structures filled in with the correct return address, data type and DOT number.

Analysis Procedures:

Integration Test Report

					

Integration ID: 	Carrier Snapshot

ITP ID: SDM-CS-002

Version Control ID: APL V01-B02				Test Seq Number: 	01

Test Conductor:	Grace McGonnigal			Test Date: 7/1//96

Purpose of Test:

To verify that the function executes as planned.

Actual Results:

For each of the five requests:

SDM_retrieve_safety_data received all information necessary to complete the retrieval.

OMH_send_safety_data was given all information necessary to complete the retrieval.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:______________

�Integration Test Plan

				

Integration ID:	Carrier Snapshot

ITP ID: OMH-CS-002

Version Control ID: APL V01-B02	

Affected CSCI:	OMH

Integration Function:

Detect, accept and process five carrier snapshot requests using USDOT numbers as input

Send results to a single requester’s mailbox.

Requirement to be validated:

For each of five successive requests:

OMH must receive the proper carrier snapshot request from SDM_retrieve_safety_data.

OMH must query the database and retrieve a carrier snapshot, provided that the DOT number is a valid one.

OMH must send the snapshot to the requester’s mailbox in text form.

OMH must loop through the above steps four additional times provided that a total of five carrier snapshots are queued in the input mailbox and sent by IMH to OMH.

Test Tools, Drivers, or Special Conditions:

The MBX_Send routine was used to send the snapshot back to the requester’s mailbox.

SDB_get_view was called to retrieve the snapshot from the database.

Input Data:

Five successive sets of packet header, request header, and send request are received by OMH as inputs.

Expected Outcome:

OMH will successfully query the database, retrieve the requested snapshot, and send it to the requester’s mailbox for each of the five requests.

Test Procedure Steps:

For each of the five requests:

Verify that OMH_send_safety_data receives the packet header, request header, and send request properly filled in.

Verify that OMH_output_query_database successfully calls SDB to retrieve the snapshot.

Verify that OMH_output_message_generator successfully calls MBX_Send to forward the snapshot to the requester.

Read the snapshot for the desired DOT number from the requester’s mailbox.

Analysis Procedures:

�Integration Test Report

					

Integration ID: 	Carrier Snapshot

ITP ID: OMH-CS-002

Version Control ID: APL V01-B02				Test Seq Number: 	01

Test Conductor:	Grace McGonnigal			Test Date: 7/1//96

Purpose of Test:

To verify that the function executes as planned.

Actual Results:

The five desired snapshots were received in the requester’s mailbox, and were read using the EudoraLite mail package.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:______________

�Integration Test Plan

				

Integration ID:	Carrier Snapshot

ITP ID: IMH-CS-003

Version Control ID: APL V01-B02	

Affected CSCI:	IMH

Integration Function:

Detect, accept and process five mailbox requests for a carrier snapshot using USDOT numbers as input in pseudo-EDI format when five requests are already queued in the input mailbox;

Send results to SDM.

Requirement to be validated:

IMH must read a snapshot request from the input mailbox

IMH must recognize it as a carrier snapshot request

IMH must parse the EDI format request to obtain the DOT number

IMH must fill in the request structure with the DOT number

IMH must call the appropriate SDM routine to continue processing

IMH must loop through the above sequence of steps a total of ten times when the first five requests are already queued in the input mailbox before IMH is started, and then five additional requests are sent immediately after IMH processing begins.

Test Tools, Drivers, or Special Conditions:

The EudoraLite mail package was used to send the requests to the input mailbox. The MBX_Read routine was used to extract a message from the mailbox.

Input Data:

Ten mail messages, with valid carrier snapshot requests.

Expected Outcome:

IMH will call SDM_retrieve_safety_data ten successive times with the packet header request type correctly filled with SAF_TRANS_DATA_REQUEST. The request structure will contain the correct DOT number in the query criteria.

The carrier snapshot for the ten DOT numbers should be received in text form in the requester’s mailbox.

Test Procedure Steps:

Set up the ten messages in Eudora. Without starting IMH, send the first five to the IMH input mailbox.

Start the IMH process.

Immediately, use Eudora to send the next five messages to the IMH input mailbox.

For each message, check packet header, request header, and request passed to SDM_retrieve_safety_data to verify that data types and DOT number are set correctly.

Analysis Procedures:

�Integration Test Report

					

Integration ID: 	Carrier Snapshot

ITP ID: IMH-CS-003

Version Control ID: APL V01-B02			Test Seq Number: 	01

Test Conductor:	Grace McGonnigal			Test Date: 7/1//96

Purpose of Test:

To verify that the function executes as planned.

Actual Results:

Data structures for packet header, request header, and request were properly filled in and passed to SDM_retrieve_safety_data for all ten messages.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Integration Test Plan

				

Integration ID:	Carrier Snapshot

ITP ID: SDM-CS-003

Version Control ID: APL V01-B02	

Affected CSCI:	SDM

Integration Function:

Detect, accept and process five carrier snapshot requests using USDOT#’s as input when five messages are already queued in the mailbox before the IMH process is started;

Send results to OMH.

Requirement to be validated:

If IMH processing is started with five carrier snapshot requests already queued in the mailbox, and then five additional requests are immediately sent, SDM will do the following for each:

SDM receives the packet header, request header, and request properly filled in with data types and the desired DOT number.

SDM calls OMH with the packet_header, request header, and send request properly filled in.

SDM performs the above steps five times for five successive valid carrier snapshot requests forwarded to it by IMH.

Test Tools, Drivers, or Special Conditions:

None

Input Data:

Packet header, request header, and request are received as input for each of the ten requests.

Expected Outcome:

OMH is called with data structures properly filled in, and is equipped with the information needed to query the database and send results back to the requester for the ten DOT numbers.

Test Procedure Steps:

For each of the ten carrier snapshot requests forwarded from IMH to SDM:

Verify that SDM_retrieve_safety_data receives the request with the correct return address, data type and DOT number.

Verify that OMH_send_safety_data is called with data structures filled in with the correct return address, data type and DOT number.

Analysis Procedures:

�Integration Test Report

					

Integration ID: 	Carrier Snapshot

ITP ID: SDM-CS-003

Version Control ID: APL V01-B02				Test Seq Number: 	01

Test Conductor:	Grace McGonnigal			Test Date: 7/1//96

Purpose of Test:

To verify that the function executes as planned.

Actual Results:

For each of the ten requests:

SDM_retrieve_safety_data received all information necessary to complete the retrieval.

OMH_send_safety_data was given all information necessary to complete the retrieval.

Ten correct snapshots were received by the requester.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:______________

Integration Test Plan

				

Integration ID:	Carrier Snapshot

ITP ID: OMH-CS-003

Version Control ID: APL V01-B02	

Affected CSCI:	OMH

Integration Function:

Detect, accept and process five carrier snapshot requests using USDOT numbers as input when five requests are already queued in the mailbox before IMH process is started.

Send results to a single requester’s mailbox.

Requirement to be validated:

For each of the ten requests:

OMH must receive the proper carrier snapshot request from SDM_retrieve_safety_data.

OMH must query the database and retrieve a carrier snapshot, provided that the DOT number is a valid one.

OMH must send the snapshot to the requester’s mailbox in text form.

OMH must loop through the above steps four additional times provided that a total of five carrier snapshots are queued in the input mailbox and sent by IMH to OMH.

Test Tools, Drivers, or Special Conditions:

The MBX_Send routine was used to send the snapshot back to the requester’s mailbox.

SDB_get_view was called to retrieve the snapshot from the database.

Input Data:

Ten successive sets of packet header, request header, and send request are received by OMH as inputs.

Expected Outcome:

OMH will successfully query the database, retrieve the requested snapshot, and send it to the requester’s mailbox for each of the ten requests.

Test Procedure Steps:

For each of the ten requests:

Verify that OMH_send_safety_data receives the packet header, request header, and send request properly filled in.

Verify that OMH_output_query_database successfully calls SDB to retrieve the snapshot.

Verify that OMH_output_message_generator successfully calls MBX_Send to forward the snapshot to the requester.

Read the snapshot for the desired DOT number from the requester’s mailbox.

Analysis Procedures:

�Integration Test Report

					

Integration ID: 	Carrier Snapshot

ITP ID: OMH-CS-003

Version Control ID: APL V01-B02				Test Seq Number: 	01

Test Conductor:	Grace McGonnigal			Test Date: 7/1//96

Purpose of Test:

To verify that the function executes as planned.

Actual Results:

The ten desired snapshots were received in the requester’s mailbox, and were read using the EudoraLite mail package.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:______________

�Integration Test Plan

				

Integration ID:	Carrier Snapshot

ITP ID: IMH-CS-004

Version Control ID: APL V01-B02	

Affected CSCI:	IMH

Integration Function:

Detect, accept and process a carrier snapshot request using a single digit USDOT #.

Detect, accept and process a carrier snapshot request using a seven digit USDOT #.

Detect, accept and process a carrier snapshot request using a USDOT # not contained in the database.

Detect, accept and process a carrier snapshot request using an erroneous USDOT # containing alphabetic characters.

Send results to SDM.

Requirement to be validated:

IMH must read the snapshot request from the input mailbox

IMH must recognize it as a carrier snapshot request

IMH must parse the EDI format request to obtain the DOT number

IMH must fill in the request structure with the DOT number

IMH must call the appropriate SDM routine to continue processing

Test Tools, Drivers, or Special Conditions:

The EudoraLite mail package was used to send the requests to the input mailbox. The MBX_Read routine was used to extract a message from the mailbox.

Input Data:

Mail messages, with carrier snapshot requests using a single digit USDOT#, a seven digit USDOT#, a USDOT# not contained in the database, and an erroneous USDOT# containing alphabetic characters.

Expected Outcome:

IMH will call SDM_retrieve_safety_data ten successive times with the packet header request type correctly filled with SAF_TRANS_DATA_REQUEST. The request structure will contain the correct DOT number in the query criteria.

The carrier snapshot for the ten DOT numbers should be received in text form in the requester’s mailbox.

Test Procedure Steps:

Set up the messages in Eudora. Send them to the IMH input mailbox.

For each message, check packet header, request header, and request passed to SDM_retrieve_safety_data to verify that data types and DOT numbers are set correctly. (For the DOT number containing alphabetic characters, it obviously cannot be set correctly but will probably have been converted to a zero).

Analysis Procedures:

�Integration Test Report

					

Integration ID: 	Carrier Snapshot

ITP ID: IMH-CS-004

Version Control ID: APL V01-B02			Test Seq Number: 	01

Test Conductor:	Grace McGonnigal			Test Date: 7/1//96

Purpose of Test:

To verify that the function executes as planned.

Actual Results:

The single digit USDOT# test case succeeded.

The seven digit USDOT# test case succeeded.

The USDOT# that did not exist in the database resulted in a failure message.

The USDOT# containing alphabetic characters resulted in a failure message.

For all test cases, the request forwarded to SDM had the structures filled in correctly, with the exception of the USDOT # containing alphabetic characters. For that one, the ascii to long integer conversion failed, returned a zero, placed zero in the structure as the carrier id, and resulted in retrieval failure, as would be expected. IMH did not crash.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

Integration Test Plan

Integration ID:	Carrier Snapshot

ITP ID: SDM-CS-004

Version Control ID: APL V01-B02	

Affected CSCI:	SDM

Integration Function:

Detect, accept and process a carrier snapshot request using a single digit USDOT #.

Detect, accept and process a carrier snapshot request using a seven digit USDOT #.

Detect, accept and process a carrier snapshot request using a USDOT # not contained in the database.

Detect, accept and process a carrier snapshot request using an erroneous USDOT # containing alphabetic characters.

Send results to OMH.

Requirement to be validated:

SDM must receive the packet header, request header, and request with the fields filled in properly for each test request. It must forward the correct packet header, request header, and request to OMH for further processing.

Test Tools, Drivers, or Special Conditions:

None.

Input Data:

Packet headers, request headers, and requests filled in correctly, with carrier snapshot requests single digit USDOT#, a seven digit USDOT#, a USDOT# not contained in the database, and an erroneous USDOT# containing alphabetic characters.

Expected Outcome:

For each request, SDM will call OMH_send_safety_data with the data type and USDOT# set correctly. (In case of the erroneous USDOT# with alphabetic carriers, conversion to zero will be considered a desirable result).

Test Procedure Steps:

For each message, check packet header, request header, and request received by SDM_retrieve_safety_data have data types and DOT numbers set correctly. (For the DOT number containing alphabetic characters, it obviously cannot be set correctly but will probably have been converted to a zero). Similarly, verify that packet header, request header, and request have the correct settings when passed to OMH_send_safety_data for each message.

Analysis Procedures:

�Integration Test Report

					

Integration ID: 	Carrier Snapshot

ITP ID: SDM-CS-004

Version Control ID: APL V01-B02			Test Seq Number: 	01

Test Conductor:	Grace McGonnigal			Test Date: 7/1//96

Purpose of Test:

To verify that the function executes as planned.

Actual Results:

The single digit USDOT# test case succeeded.

The seven digit USDOT# test case succeeded.

The USDOT# that did not exist in the database resulted in a failure message.

The USDOT# containing alphabetic characters resulted in a failure message.

For all test cases, the request received by SDM had the structures filled in correctly, with the exception of the USDOT # containing alphabetic characters. For that one, the ascii to long integer conversion failed, returned a zero, placed zero in the structure as the carrier id.

For all test cases, the packet header, request header, and send request forwarded to OMH had the data types and USDOT numbers set correctly, or to zero in the case of the alphabetic DOT number.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Integration Test Plan

				

Integration ID:	Carrier Snapshot

ITP ID: OMH-CS-004

Version Control ID: APL V01-B02	

Affected CSCI:	OMH

Integration Function:

Detect, accept and process a carrier snapshot request using a single digit USDOT #.

Detect, accept and process a carrier snapshot request using a seven digit USDOT #.

Detect, accept and process a carrier snapshot request using a USDOT # not contained in the database.

Detect, accept and process a carrier snapshot request using an erroneous USDOT # containing alphabetic characters.

Send results to the requester’s mailbox.

Requirement to be validated:

OMH must receive the proper carrier snapshot request from SDM_retrieve_safety_data.

OMH must query the database and retrieve a carrier snapshot, provided that the DOT number is a valid one.

OMH must send the snapshot to the requester’s mailbox in text form.

Test Tools, Drivers, or Special Conditions:

None.

Input Data:

Packet headers, request headers, and send requests filled in correctly, with carrier snapshot requests single digit USDOT#, a seven digit USDOT#, a USDOT# not contained in the database, and an erroneous USDOT# containing alphabetic characters.

Expected Outcome:

For each test message, OMH will successfully query the database, retrieve the requested snapshot, and send it to the requester’s mailbox.

Test Procedure Steps:

For each test message:

Verify that OMH_send_safety_data receives the packet header, request header, and send request properly filled in.

Verify that OMH_output_query_database successfully calls SDB to retrieve the snapshot.

Verify that OMH_output_message_generater successfully calls MBX_Send to forward the snapshot to the requester.

Read the snapshot for the desired DOT number from the requester’s mailbox.

Analysis Procedures:

�Integration Test Report

					

Integration ID: 	Carrier Snapshot

ITP ID: OMH-CS-004

Version Control ID: APL V01-B02			Test Seq Number: 	01

Test Conductor:	Grace McGonnigal			Test Date: 7/1//96

Purpose of Test:

To verify that the function executes as planned.

Actual Results:

The single digit USDOT# test case succeeded.

The seven digit USDOT# test case succeeded.

The USDOT# that did not exist in the database resulted in a failure message.

The USDOT# containing alphabetic characters resulted in a failure message.

For all test cases, the request received by SDM had the structures filled in correctly, with the exception of the USDOT # containing alphabetic characters. For that one, the ascii to long integer conversion failed, returned a zero, placed zero in the structure as the carrier id.

For all test cases, the packet header, request header, and send request received by OMH had the data types and USDOT numbers set correctly, or to zero in the case of the alphabetic DOT number.

For the single digit and seven digit USDOT numbers, the snapshot retrieval succeeded and the snapshots were sent to the requester’s mailbox and read from it. For the non-existing USDOT# and the one containing alphabetic characters (which was converted to zero, a non-existing USDOT#), the database queries failed, and a failure message was sent to the requester’s mailbox.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Integration Test Plan

				

Integration ID:	Carrier Snapshot

ITP ID: IMH-CS-005

Version Control ID: APL V01-B02	

Affected CSCI:	IMH

Integration Function:

Process a carrier snapshot request that is pure nonsense (that does not begin with ‘R’, ‘C’, or ‘S’).

Process a carrier snapshot request containing ‘R’ followed by nonsense.

Process a carrier snapshot request containing ‘C’ followed by nonsense.

Process a carrier snapshot request containing ‘S’ followed by nonsense.

Requirement to be validated:

IMH must process erroneous incoming requests by rejecting them without crashing, and by informing the requester of an error if appropriate.

Test Tools, Drivers, or Special Conditions:

The EudoraLite mail package was used to send the requests to the input mailbox. The MBX_Read routine was used to extract a message from the mailbox.

Input Data:

Mail messages, with carrier snapshot requests containing pure nonsense, ‘R’ followed by nonsense, ‘S’ followed by nonsense, and ‘C’ followed by nonsense.

Expected Outcome:

IMH will not forward the pure nonsense request to SDM, since it is not a request at all.

IMH will forward ‘C’ followed by nonsense to SDM as a carrier snapshot update request although it does not contain a valid record for updating the database.

IMH will not forward ‘R’ or ‘S’ followed by nonsense requests to SDM.

Test Procedure Steps:

Set up the messages in Eudora. Send them to the IMH input mailbox.

View output screen for possible error messages.

Check request structures forwarded to SDM_retrieve_safety_data for the ‘R’ and ‘S’ plus nonsense requests.

Check structures forwarded to SDM_update_safety_data for the ‘C’ plus nonsense request.

Analysis Procedures:

�Integration Test Report

					

Integration ID: 	Carrier Snapshot

ITP ID: IMH-CS-005

Version Control ID: APL V01-B02			Test Seq Number: 	01

Test Conductor:	Grace McGonnigal			Test Date: 7/1//96

Purpose of Test:

To verify that the function executes as planned.

Actual Results:

For the pure nonsense request, IMH printed a message to the console that it was not a valid message type and did not process it further.

For the ‘C’ plus nonsense message, IMH accepted it as a snapshot update request and forwarded it to SDM.

For the ‘R’ plus nonsense message, IMH accepted it as a snapshot retrieval request, but did not extract a valid USDOT# from the message. It forwarded a request for USDOT# zero to SDM.

The ‘S’ plus nonsense message caused IMH to crash while trying to parse the EDI segments to obtain a USDOT#. (This problem was corrected later by improving error handling in the EDI parse routines. After correction, a request for USDOT# was forwarded to SDM, but IMH no longer crashed.)

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Integration Test Plan

				

Integration ID:	Carrier Snapshot

ITP ID: SDM-CS-005

Version Control ID: APL V01-B02	

Affected CSCI:	SDM

Integration Function:

Process a carrier snapshot request that is pure nonsense (that does not begin with ‘R’, ‘C’, or ‘S’).

Process a carrier snapshot request containing ‘R’ followed by nonsense.

Process a carrier snapshot request containing ‘C’ followed by nonsense.

Process a carrier snapshot request containing ‘S’ followed by nonsense.

Forward results, if any, to OMH for further processing.

Requirement to be validated:

SDM must process erroneous incoming requests without crashing.

Test Tools, Drivers, or Special Conditions:

None.

Input Data:

Input for ‘R’ or ‘S’ plus nonsense was the carrier snapshot request structure. Input for ‘C’ plus nonsense was the carrier snapshot update structure.

Expected Outcome:

The pure nonsense message will never reach SDM.

‘C’ plus nonsense will result in a failure by SDB when trying to update the database with a totally invalid record.

‘R’ and ‘S’ plus nonsense with result in SDM trying to retrieve USDOT# = 0, which does not exist. An error message will be forwarded to OMH.

Test Procedure Steps:

Set up the messages in Eudora. Send them to the IMH input mailbox.

View output screen for possible error messages.

Check request structures forwarded to SDM_retrieve_safety_data for the ‘R’ and ‘S’ plus nonsense requests.

Check structures forwarded to SDM_update_safety_data for the ‘C’ plus nonsense request.

Analysis Procedures:

�Integration Test Report

					

Integration ID: 	Carrier Snapshot

ITP ID: SDM-CS-005

Version Control ID: APL V01-B02			Test Seq Number: 	01

Test Conductor:	Grace McGonnigal			Test Date: 7/1//96

Purpose of Test:

To verify that the function executes as planned.

Actual Results:

For the pure nonsense request, SDM was not called by IMH.

For the ‘C’ plus nonsense message, SDB attempted to update the database and failed.

For the ‘R’ and ‘S’ plus nonsense message, SDM received structures containing zero for the USDOT#. SDB then failed to retrieve a snapshot. OMH was called to output an error message.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:______________

�Integration Test Plan

				

Integration ID:	Carrier Snapshot

ITP ID: OMH-CS-005

Version Control ID: APL V01-B02	

Affected CSCI:	OMH

Integration Function:

Process a carrier snapshot request that is pure nonsense (that does not begin with ‘R’, ‘C’, or ‘S’).

Process a carrier snapshot request containing ‘R’ followed by nonsense.

Process a carrier snapshot request containing ‘C’ followed by nonsense.

Process a carrier snapshot request containing ‘S’ followed by nonsense.

Forward results, if any, to requester’s mailbox.

Requirement to be validated:

OMH must process erroneous incoming requests without crashing.

Test Tools, Drivers, or Special Conditions:

EudoraLite mail package and MBX_Send routine were used to return results to the requester.

Input Data:

Input for ‘R’ or ‘S’ plus nonsense was the carrier snapshot send request structure. OMH received no input for pure nonsense or ‘C’ plus nonsense.

Expected Outcome:

The pure nonsense message will never reach OMH.

‘C’ plus nonsense will result in a failure by SDB when trying to update the database with a totally invalid record and will not require any processing by OMH.

‘R’ and ‘S’ plus nonsense with result in OMH forwarding a snapshot retrieval failure message to the requester’s mailbox.

Test Procedure Steps:

Check request structures forwarded to OMH by SDM_retrieve_safety_data for the ‘R’ and ‘S’ plus nonsense requests.

Check output screen and requester’s mailbox for error messages.

Analysis Procedures:

�Integration Test Report

					

Integration ID: 	Carrier Snapshot

ITP ID: OMH-CS-005

Version Control ID: APL V01-B02			Test Seq Number: 	01

Test Conductor:	Grace McGonnigal			Test Date: 7/1//96

Purpose of Test:

To verify that the function executes as planned.

Actual Results:

For the pure nonsense request, OMH was not reached.

For the ‘C’ plus nonsense message, SDB attempted to update the database and failed. No action was required of OMH

For the ‘R’ and ‘S’ plus nonsense message, SDM received structures containing zero for the USDOT#. SDB then failed to retrieve a snapshot. OMH output snapshot retrieval failure messages to the requester’s mailbox.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Integration Test Plan

				

Integration ID:	Carrier Snapshot

ITP ID: IMH-CS-006

Version Control ID: APL V01-B02	

Affected CSCI:	IMH

Integration Function:

Send, accept, and process a single mailbox request for a carrier snapshot using a USDOT# as input in Aspen format (D=USDOT#).

Send results to SDM.

Requirement to be validated:

IMH must read a snapshot request from the input mailbox

IMH must recognize it as a carrier snapshot request in Aspen format

IMH must parse the Aspen (D=#) format request to obtain the DOT number

IMH must fill in the request structure with the DOT number

IMH must call the appropriate SDM routine to continue processing

Test Tools, Drivers, or Special Conditions:

The EudoraLite mail package was used to send the requests to the input mailbox. The MBX_Read routine was used to extract a message from the mailbox.

Input Data:

Mail message containing the following two lines:

RCS

D=4

Expected Outcome:

IMH will call SDM_retrieve_safety_data with the packet header request type correctly filled with SAF_TRANS_DATA_REQUEST. The request structure will contain the correct DOT number in the query criteria.

The carrier snapshot for DOT number 4 should be received in text form in the requester’s mailbox.

Test Procedure Steps:

Set up the message in Eudora. Send it to the IMH input mailbox.

Check packet header, request header, and request passed to SDM_retrieve_safety_data to verify that data types and DOT number are set correctly.

Analysis Procedures:

�Integration Test Report

					

Integration ID: 	Carrier Snapshot

ITP ID: IMH-CS-006

Version Control ID: APL V01-B02			Test Seq Number: 	01

Test Conductor:	Grace McGonnigal			Test Date: 7/1//96

Purpose of Test:

To verify that the function executes as planned.

Actual Results:

Data structures for packet header, request header, and request were properly filled in and passed to SDM_retrieve_safety_data.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Integration Test Plan

				

Integration ID:	Carrier Snapshot

ITP ID: SDM-CS-006

Version Control ID: APL V01-B02	

Affected CSCI:	SDM

Integration Function:

Detect, accept and process a single carrier snapshot request using USDOT numbers as input in Aspen format (D=USDOT#);

Send results to OMH.

Requirement to be validated:

SDM receives the packet header, request header, and request properly filled in with data types and the desired DOT number.

SDM calls OMH with the packet header, request header, and send request properly filled in.

Test Tools, Drivers, or Special Conditions:

None

Input Data:

Packet header, request header, and request are received as input.

Expected Outcome:

OMH is called with data structures properly filled in, and is equipped with the information needed to query the database and send results back to the requester.

Test Procedure Steps:

Verify that SDM_retrieve_safety_data receives the request with the correct return address, data type and DOT number.

Verify that OMH_send_safety_data is called with data structures filled in with the correct return address, data type and DOT number.

Analysis Procedures:

�Integration Test Report

					

Integration ID: 	Carrier Snapshot

ITP ID: SDM-CS-006

Version Control ID: APL V01-B02				Test Seq Number: 	01

Test Conductor:	Grace McGonnigal			Test Date: 7/1//96

Purpose of Test:

To verify that the function executes as planned.

Actual Results:

SDM_retrieve_safety_data received all information necessary to complete the retrieval.

OMH_send_safety_data was given all information necessary to complete the retrieval.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:______________

�Integration Test Plan

				

Integration ID:	Carrier Snapshot

ITP ID: OMH-CS-006

Version Control ID: APL V01-B02	

Affected CSCI:	OMH

Integration Function:

Detect, accept and process a single carrier snapshot request using USDOT numbers as input in Aspen format (D=USDOT#).

Send results to a single requester’s mailbox.

Requirement to be validated:

OMH must receive the proper carrier snapshot request from SDM_retrieve_safety_data.

OMH must query the database and retrieve a carrier snapshot, provided that the DOT number is a valid one.

OMH must send the snapshot to the requester’s mailbox in text form.

Test Tools, Drivers, or Special Conditions:

The MBX_Send routine was used to send the snapshot back to the requester’s mailbox.

SDB_get_view was called to retrieve the snapshot from the database.

Input Data:

Packet header, request header, and send request are received by OMH as inputs.

Expected Outcome:

OMH will successfully query the database, retrieve the requested snapshot, and send it to the requester’s mailbox for the request.

Test Procedure Steps:

Verify that OMH_send_safety_data receives the packet header, request header, and send request properly filled in.

Verify that OMH_output_query_database successfully calls SDB to retrieve the snapshot.

Verify that OMH_output_message_generator successfully calls MBX_Send to forward the snapshot to the requester.

Read the snapshot for the desired DOT number from the requester’s mailbox.

Analysis Procedures:

�Integration Test Report

					

Integration ID: 	Carrier Snapshot

ITP ID: OMH-CS-006

Version Control ID: APL V01-B02				Test Seq Number: 	01

Test Conductor:	Grace McGonnigal			Test Date: 7/1//96

Purpose of Test:

To verify that the function executes as planned.

Actual Results:

The desired snapshot was received in the requester’s mailbox, and was read using the EudoraLite mail package.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:______________

�Integration Test Plan

				

Integration ID:	Carrier Snapshot

ITP ID: IMH-CS-009

Version Control ID: APL V01-B02	

Affected CSCI:	IMH

Integration Function:

Send, accept, and process mailbox requests for a carrier snapshot using USDOT numbers as inputs at various rates to determine system responsiveness.

Determine saturation point- first point at which mailbox is filling faster than it is emptying.

Before doing this, determine the minimum Sleep statement that will prevent POP3 error messages.

Send results to SDM.

Requirement to be validated:

IMH must read a snapshot request from the input mailbox

IMH must fill in the request structure with the DOT number

IMH must call the appropriate SDM routine to continue processing

IMH must perform the above steps repeatedly under any reasonable level of system load.

Spurious POP3 error messages should not be printed to the output screen.

Test Tools, Drivers, or Special Conditions:

The EudoraLite mail package was used to send the requests to the input mailbox. The MBX_Read routine was used to extract a message from the mailbox.

 For this test, multiple requesters must be used to stress the system. One requester cannot send messages fast enough with EudoraLite, even if they are set up in advance.

During the test, no other processing should be done on the system.

To further stress the system, one hundred requests were queued in the input mailbox before the IMH process was started. Then three requester’s each sent one hundred additional requests at the same time. (Some of the three hundred requests were submitted twice).

Input Data:

Three hundred mail messages containing carrier snapshot requests in EDI format.

Expected Outcome:

Large numbers of requests will not crash or confuse IMH. IMH will be able to handle three to four hundred snapshot requests within a period of five to seven minutes.

Test Procedure Steps:

Each requester will read the responses sent by OMH to his/her mailbox and verify that a snapshot was received corresponding to each request submitted. Set up three hundred different carrier snapshot request messages in Eudora.

Send one hundred to the IMH input mailbox.

Start IMH processing.

Each requester will immediately send the assigned test messages to the IMH input mailbox.

Wait a few minutes for IMH to finish all retrievals.

Analysis Procedures:

�Integration Test Report

					

Integration ID: 	Carrier Snapshot

ITP ID: IMH-CS-009

Version Control ID: APL V01-B02			Test Seq Number: 	01

Test Conductor:	Grace McGonnigal			Test Date: 7/1//96

Purpose of Test:

To verify that the function executes as planned.

Actual Results:

A Sleep statement of 225 milliseconds prevented POP3 error messages. 200 milliseconds did not prevent all error messages, but did prevent most, so 225 ms seems to be a good threshold.

Carrier snapshots were rapidly received for the one hundred requests queued up before IMH processing began. Two of the requesters rapidly received carrier snapshots for all requests submitted. The third requester was not using a proper Eudora account to send requests and receive responses. Some of his requests succeeded, but most failed. However, the problem seemed to be within the Eudora setup, not within IMH. IMH did not crash, and perfectly processed all other requests.

A saturation point was not reached with three people testing. Further testing must be done with a larger number of requesters.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Integration Test Plan

				

Integration ID:	Carrier Snapshot

ITP ID: SDM-CS-009

Version Control ID: APL V01-B02	

Affected CSCI:	SDM

Integration Function:

Send, accept, and process mailbox requests for a carrier snapshot using USDOT numbers as inputs at various rates to determine system responsiveness.

Determine saturation point- first point at which mailbox is filling faster than it is emptying.

Before doing this, determine the minimum Sleep statement that will prevent POP3 error messages.

Send results to OMH.

Requirement to be validated:

SDM receives the packet header, request header, and request properly filled in with data types and the desired DOT number.

SDM calls OMH with the packet header, request header, and send request properly filled in.

Test Tools, Drivers, or Special Conditions:

None

Input Data:

Packet header, request header, and request are received as input for each request.

Expected Outcome:

SDM receives requests properly filled in with the USDOT numbers.

OMH is called with data structures properly filled in, and is equipped with the information needed to query the database and send results back to the requester.

Large number of requests will be processed sequentially and result in no confusion or overload.

Test Procedure Steps:

Set up three hundred different carrier snapshot request messages in Eudora.

Send one hundred to the IMH input mailbox.

Start IMH processing.

Each requester will immediately send the assigned test messages to the IMH input mailbox.

Wait a few minutes for IMH to finish all retrievals.

Verify that SDM_retrieve_safety_data receives the request with the correct return address, data type and DOT number.

Verify that OMH_send_safety_data is called with data structures filled in with the correct return address, data type and DOT number.

Analysis Procedures:

�Integration Test Report

					

Integration ID: 	Carrier Snapshot

ITP ID: SDM-CS-009

Version Control ID: APL V01-B02				Test Seq Number: 	01

Test Conductor:	Grace McGonnigal			Test Date: 7/1//96

Purpose of Test:

To verify that the function executes as planned.

Actual Results:

Carrier snapshots were rapidly received for the one hundred requests queued up before processing began. Two of the requesters rapidly received carrier snapshots for all requests submitted. The third requester was not using a proper Eudora account to send requests and receive responses. Some of his requests succeeded, but most failed. However, the problem seemed to be within the Eudora setup, not within SDM. SDM did not crash, and perfectly processed all other requests.

SDM_retrieve_safety_data received all information necessary to complete the retrievals.

OMH_send_safety_data was given all information necessary to complete the retrievals.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:______________

�Integration Test Plan

				

Integration ID:	Carrier Snapshot

ITP ID: OMH-CS-009

Version Control ID: APL V01-B02	

Affected CSCI:	OMH

Integration Function:

Send, accept, and process mailbox requests for a carrier snapshot using USDOT numbers as inputs at various rates to determine system responsiveness.

Determine saturation point- first point at which mailbox is filling faster than it is emptying.

Before doing this, determine the minimum Sleep statement that will prevent POP3 error messages.

Send results to requesters’ mailboxes.

Requirement to be validated:

OMH must receive the proper carrier snapshot request from SDM_retrieve_safety_data.

OMH must query the database and retrieve a carrier snapshot, provided that the DOT number is a valid one.

OMH must send the snapshot to the requester’s mailbox in text form.

Rapidly processing a large number of requests in sequence will not cause a crash or processing overload for OMH.

Test Tools, Drivers, or Special Conditions:

The MBX_Send routine was used to send the snapshot back to the requester’s mailbox.

SDB_get_view was called to retrieve the snapshot from the database.

Input Data:

Packet header, request header, and send request are received by OMH as inputs for each request.

Expected Outcome:

OMH will successfully query the database, retrieve the requested snapshot, and send it to the requester’s mailbox for the request even though hundreds of snapshot requests are received in a few minutes.

Test Procedure Steps:

Set up three hundred different carrier snapshot request messages in Eudora.

Send one hundred to the IMH input mailbox.

Start IMH processing.

Each requester will immediately send the assigned test messages to the IMH input mailbox.

Wait a few minutes for IMH to finish all retrievals.

Verify that OMH_send_safety_data receives the packet header, request header, and send request properly filled in.

Verify that OMH_output_query_database successfully calls SDB to retrieve the snapshot.

Verify that OMH_output_message_generator successfully calls MBX_Send to forward the snapshot to the requester.

Read the snapshot for the desired DOT number from the requester’s mailbox.

Analysis Procedures:

�Integration Test Report

					

Integration ID: 	Carrier Snapshot

ITP ID: OMH-CS-009

Version Control ID: APL V01-B02				Test Seq Number: 	01

Test Conductor:	Grace McGonnigal			Test Date: 7/1//96

Purpose of Test:

To verify that the function executes as planned.

Actual Results:

Carrier snapshots were rapidly received for the one hundred requests queued up before processing began. Two of the requesters rapidly received carrier snapshots for all requests submitted. The third requester was not using a proper Eudora account to send requests and receive responses. Some of his requests succeeded, but most failed. However, the problem seemed to be within the Eudora setup, not within OMH. OMH did not crash, and perfectly processed all other requests.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Integration Test Plan

				

Integration ID:	Carrier Update

ITP ID: IMH-CU-001

Version Control ID: APL V01-B02	

Affected CSCI:	IMH

Integration Function:

Send, accept and process a single mailbox request for carrier snapshot add operation.

Use an empty subscriber list (no subscribers).

Send results to SDM.

Requirement to be validated:

IMH must read a snapshot add request from the input mailbox

IMH must recognize it as a carrier snapshot add request

IMH must call the appropriate SDM routine to continue processing and provide it with the correct data types and the database update record itself.

Test Tools, Drivers, or Special Conditions:

The EudoraLite mail package was used to send the requests to the input mailbox. The MBX_Read routine was used to extract messages from the mailbox.

Input Data:

One database update request, with valid data, and a USDOT# not yet existing in the database.

Expected Outcome:

IMH will call SDM_update_safety_data with the correct packet header, data header, and update data.

Test Procedure Steps:

Check packet header, data header, and update data passed to SDM_update_safety_data to verify that data structures are correctly filled in for the update request.

Analysis Procedures:

�Integration Test Report

					

Integration ID: 	Carrier Update

ITP ID: IMH-CU-001

Version Control ID: APL V01-B02			Test Seq Number: 	01

Test Conductor:	Grace McGonnigal			Test Date: 7/1//96

Purpose of Test:

To verify that the function executes as planned.

Actual Results:

Data structures for packet header, data header, and update data were properly filled in and passed to SDM_update_safety_data.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Integration Test Plan

				

Integration ID:	Carrier Update

ITP ID: SDM-CU-001

Version Control ID: APL V01-B02	

Affected CSCI:	SDM

Integration Function:

Send, accept and process a single mailbox request for carrier snapshot add operation.

Use an empty subscriber list (no subscribers).

Send results to OMH if appropriate.

Requirement to be validated:

SDM_update_data must receive a packet header, data header, and update data filled in with accurate information so that it can update the database.

Test Tools, Drivers, or Special Conditions:

None.

Input Data:

One database update request, with valid data, and a USDOT# not yet existing in the database.

Subscription list file (existing, but empty).

Expected Outcome:

IMH will call SDM_update_safety_data with the correct packet header, data header, and update data.

Test Procedure Steps:

Check packet header, data header, and update data passed to SDM_update_safety_data to verify that data structures are correctly filled in for the update request.

Verify that no attempt is made by SL_fulfill_subscription to send updates to users, since the subscription list is empty in this test.

Analysis Procedures:

�Integration Test Report

					

Integration ID: 	Carrier Update

ITP ID: SDM-CU-001

Version Control ID: APL V01-B02			Test Seq Number: 	01

Test Conductor:	Grace McGonnigal			Test Date: 7/1//96

Purpose of Test:

To verify that the function executes as planned.

Actual Results:

Data structures for packet header, data header, and update data were properly filled in and passed to SDM_update_safety_data.

SL_fulfill_subscription correctly found that the subscription list was empty, and did not try to send updates to any mailboxes.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Integration Test Plan

				

Integration ID:	Carrier Update

ITP ID: OMH-CU-001

Version Control ID: APL V01-B02	

Affected CSCI:	OMH

Integration Function:

Send, accept and process a single mailbox request for carrier snapshot add operation.

Use an empty subscriber list (no subscribers).

Do not attempt to send updates to any subscribers.

Requirement to be validated:

Since there are no subscribers who need to receive updates, OMH should not be reached in this test.

Test Tools, Drivers, or Special Conditions:

None.

Input Data:

No input should be received by OMH.

Expected Outcome:

OMH will never be called and will do nothing in this test case.

Test Procedure Steps:

Verify that within SL_fulfill_subscription, since the subscription list is empty, SDM_retrieve_safety_data is never called.

Check output screen for possible error messages.

Check mailboxes for erroneous attempts to send updates to users.

Analysis Procedures:

�Integration Test Report

					

Integration ID: 	Carrier Update

ITP ID: OMH-CU-001

Version Control ID: APL V01-B02			Test Seq Number: 	01

Test Conductor:	Grace McGonnigal			Test Date: 7/1//96

Purpose of Test:

To verify that the function executes as planned.

Actual Results:

OMH was never called, and did nothing.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Integration Test Plan

				

Integration ID:	Carrier Update

ITP ID: IMH-CU-002

Version Control ID: APL V01-B02	

Affected CSCI:	IMH

Integration Function:

Send, accept and process a single mailbox request for carrier snapshot add operation.

Use a subscriber list containing one and only one valid subscriber.

Send results to SDM.

Requirement to be validated:

IMH must read a snapshot add request from the input mailbox

IMH must recognize it as a carrier snapshot add request

IMH must call the appropriate SDM routine to continue processing and provide it with the correct data types and the database update record itself.

Test Tools, Drivers, or Special Conditions:

The EudoraLite mail package was used to send the requests to the input mailbox. The MBX_Read routine was used to extract messages from the mailbox.

Input Data:

One database update request, with valid data, and a USDOT# not yet existing in the database.

Expected Outcome:

IMH will call SDM_update_safety_data with the correct packet header, data header, and update data.

Test Procedure Steps:

Check packet header, data header, and update data passed to SDM_update_safety_data to verify that data structures are correctly filled in for the update request.

Analysis Procedures:

Integration Test Report

					

Integration ID: 	Carrier Update

ITP ID: IMH-CU-002

Version Control ID: APL V01-B02			Test Seq Number: 	01

Test Conductor:	Grace McGonnigal			Test Date: 7/1//96

Purpose of Test:

To verify that the function executes as planned.

Actual Results:

Data structures for packet header, data header, and update data were properly filled in and passed to SDM_update_safety_data.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Integration Test Plan

				

Integration ID:	Carrier Update

ITP ID: SDM-CU-002

Version Control ID: APL V01-B02	

Affected CSCI:	SDM

Integration Function:

Send, accept and process a single mailbox request for carrier snapshot add operation.

Use a subscriber list containing one and only one valid subscriber.

Send results to OMH to forward to the subscriber.

Requirement to be validated:

SDM_update_data must receive a packet header, data header, and update data filled in with accurate information so that it can update the database.

SDM must call SL_fulfill_subscription to forward a snapshot update to the one subscriber.

Test Tools, Drivers, or Special Conditions:

Use SQLPlus to view the newly added record and verify that it was written to the database properly.

Input Data:

One database update request, with valid data, and a USDOT# not yet existing in the database.

Subscription list file containing the mail address for one subscriber.

Expected Outcome:

SDM_update_safety_data will receive the correct packet header, data header, and update data.

SL_fulfill_subscription will call SDM_retrieve_safety_data to obtain the updated snapshot and request OMH to forward it to the subscriber.

Test Procedure Steps:

Check packet header, data header, and update data passed to SDM_update_safety_data to verify that data structures are correctly filled in for the update request.

Verify that SL_fulfill_subscription and SDM_retrieve_safety_data perform all processing necessary to enable OMH to forward a copy of the updated snapshot to the one subscriber.

Analysis Procedures:

�Integration Test Report

					

Integration ID: 	Carrier Update

ITP ID: SDM-CU-002

Version Control ID: APL V01-B02			Test Seq Number: 	01

Test Conductor:	Grace McGonnigal			Test Date: 7/1//96

Purpose of Test:

To verify that the function executes as planned.

Actual Results:

Data structures for packet header, data header, and update data were properly filled in and passed to SDM_update_safety_data. SDM_update_safety_data successfully added the record to the database.

SL_fulfill_subscription correctly read the subscription list, and called SDM_retrieve_safety_data to retrieve the updated snapshot and forward information to OMH.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Integration Test Plan

				

Integration ID:	Carrier Update

ITP ID: OMH-CU-002

Version Control ID: APL V01-B02	

Affected CSCI:	OMH

Integration Function:

Send, accept and process a single mailbox request for carrier snapshot add operation.

Use a subscriber list containing one and only one subscriber.

Send a copy of the updated snapshot to the one subscriber.

Requirement to be validated:

OMH will forward a mail message containing a copy of the newly added snapshot to the one subscriber.

Test Tools, Drivers, or Special Conditions:

MBX_Send routine is used to forward the message to the subscriber’s mailbox. EudoraLite mail package is used to read the message and verify that an updated carrier snapshot was received by the subscriber.

Input Data:

A valid packet header, request header, and send request will be the input to OMH.

Expected Outcome:

OMH will query the database, obtain a copy of the newly added record, and send it to the subscriber.

Test Procedure Steps:

Verify that OMH_query_database successfully retrieves the new record.

Verify that OMH_output_message_generator forwards the new snapshot to the subscriber.

Read message in subscriber’s mailbox. Verify that the correct snapshot was sent.

Analysis Procedures:

Integration Test Report

					

Integration ID: 	Carrier Update

ITP ID: OMH-CU-002

Version Control ID: APL V01-B02			Test Seq Number: 	01

Test Conductor:	Grace McGonnigal			Test Date: 7/1//96

Purpose of Test:

To verify that the function executes as planned.

Actual Results:

The new carrier snapshot was sent to the subscriber’s mailbox.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Integration Test Plan

				

Integration ID:	Carrier Update

ITP ID: IMH-CU-003

Version Control ID: APL V01-B02	

Affected CSCI:	IMH

Integration Function:

Send, accept and process a single mailbox request for carrier snapshot add operation.

Use a subscriber list containing at least three subscribers, one of which is invalid.

Send results to SDM.

Requirement to be validated:

IMH must read a snapshot add request from the input mailbox

IMH must recognize it as a carrier snapshot add request

IMH must call the appropriate SDM routine to continue processing and provide it with the correct data types and the database update record itself.

Test Tools, Drivers, or Special Conditions:

The EudoraLite mail package was used to send the requests to the input mailbox. The MBX_Read routine was used to extract messages from the mailbox.

Input Data:

One database update request, with valid data, and a USDOT# not yet existing in the database.

Expected Outcome:

IMH will call SDM_update_safety_data with the correct packet header, data header, and update data.

Test Procedure Steps:

Check packet header, data header, and update data passed to SDM_update_safety_data to verify that data structures are correctly filled in for the update request.

Analysis Procedures:

Integration Test Report

					

Integration ID: 	Carrier Update

ITP ID: IMH-CU-003

Version Control ID: APL V01-B02			Test Seq Number: 	01

Test Conductor:	Grace McGonnigal			Test Date: 7/1//96

Purpose of Test:

To verify that the function executes as planned.

Actual Results:

Data structures for packet header, data header, and update data were properly filled in and passed to SDM_update_safety_data.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Integration Test Plan

				

Integration ID:	Carrier Update

ITP ID: SDM-CU-003

Version Control ID: APL V01-B02	

Affected CSCI:	SDM

Integration Function:

Send, accept and process a single mailbox request for carrier snapshot add operation.

Use a subscriber list containing at least three subscribers, one of which is invalid.

Send results to OMH to forward to the subscribers.

Requirement to be validated:

SDM_update_data must receive a packet header, data header, and update data filled in with accurate information so that it can update the database.

SDM must call SL_fulfill_subscription to forward a snapshot update to the subscribers.

Test Tools, Drivers, or Special Conditions:

Use SQLPlus to view the newly added record and verify that it was written to the database properly.

Input Data:

One database update request, with valid data, and a USDOT# not yet existing in the database.

Subscription list file containing the mail address for three or more subscribers, one of which is invalid.

Expected Outcome:

SDM_update_safety_data will receive the correct packet header, data header, and update data.

SL_fulfill_subscription will call SDM_retrieve_safety_data to obtain the updated snapshot and request OMH to forward it to the subscribers.

Test Procedure Steps:

Check packet header, data header, and update data passed to SDM_update_safety_data to verify that data structures are correctly filled in for the update request.

Verify that SL_fulfill_subscription and SDM_retrieve_safety_data perform all processing necessary to enable OMH to forward a copy of the updated snapshot to the subscribers.

Analysis Procedures:

					

�Integration Test Report

Integration ID: 	Carrier Update

ITP ID: SDM-CU-003

Version Control ID: APL V01-B02			Test Seq Number: 	01

Test Conductor:	Grace McGonnigal			Test Date: 7/1//96

Purpose of Test:

To verify that the function executes as planned.

Actual Results:

Data structures for packet header, data header, and update data were properly filled in and passed to SDM_update_safety_data. SDM_update_safety_data successfully added the record to the database.

SL_fulfill_subscription correctly read the subscription list, and called SDM_retrieve_safety_data to retrieve the updated snapshot and forward information to OMH.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Integration Test Plan

				

Integration ID:	Carrier Update

ITP ID: OMH-CU-003

Version Control ID: APL V01-B02	

Affected CSCI:	OMH

Integration Function:

Send, accept and process a single mailbox request for carrier snapshot add operation.

Use a subscriber list containing at least three subscribers, one of which is invalid.

Send a copy of the updated snapshot to the subscribers.

Requirement to be validated:

OMH will forward a mail message containing a copy of the newly added snapshot to the valid subscribers.

Having an invalid subscriber on the list will not cause a crash or processing problems.

Test Tools, Drivers, or Special Conditions:

MBX_Send routine is used to forward the message to the subscriber’s mailbox. EudoraLite mail package is used to read the message and verify that an updated carrier snapshot was received by the subscriber.

Input Data:

A valid packet header, request header, and send request will be the input to OMH.

Expected Outcome:

OMH will query the database, obtain a copy of the newly added record, and send it to the subscribers.

Test Procedure Steps:

Verify that OMH_query_database successfully retrieves the new record.

Verify that OMH_output_message_generator forwards the new snapshot to the subscribers.

Read message in each subscriber’s mailbox. Verify that the correct snapshot was sent.

Check output screen for error messages concerning invalid subscriber.

Analysis Procedures:

Integration Test Report

					

Integration ID: 	Carrier Update

ITP ID: OMH-CU-003

Version Control ID: APL V01-B02			Test Seq Number: 	01

Test Conductor:	Grace McGonnigal			Test Date: 7/1//96

Purpose of Test:

To verify that the function executes as planned.

Actual Results:

The new carrier snapshot was sent to each valid subscriber’s mailbox.

An error message concerning “Unknown user” was printed on the output screen. The invalid subscriber caused no processing problems.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Integration Test Plan

				

Integration ID:	Carrier Update

ITP ID: IMH-CU-006

Version Control ID: APL V01-B02	

Affected CSCI:	IMH

Integration Function:

Send, accept and process five separate mailbox requests for carrier snapshot add operations.

Use a subscriber list containing at least three subscribers, one of which is invalid.

Send results to SDM.

Requirement to be validated:

IMH must read a snapshot add request from the input mailbox

IMH must recognize it as a carrier snapshot add request

IMH must call the appropriate SDM routine to continue processing and provide it with the correct data types and the database update record itself.

IMH must be able to perform the above steps five successive times.

Test Tools, Drivers, or Special Conditions:

The EudoraLite mail package was used to send the requests to the input mailbox. The MBX_Read routine was used to extract messages from the mailbox.

Input Data:

Five database update requests, with valid data, and USDOT#’s not yet existing in the database.

Expected Outcome:

IMH will call SDM_update_safety_data with the correct packet header, data header, and update data for each update request.

Test Procedure Steps:

Check packet header, data header, and update data passed to SDM_update_safety_data to verify that data structures are correctly filled in for each update request.

Analysis Procedures:

Integration Test Report

					

Integration ID: 	Carrier Update

ITP ID: IMH-CU-006

Version Control ID: APL V01-B02			Test Seq Number: 	01

Test Conductor:	Grace McGonnigal			Test Date: 7/1//96

Purpose of Test:

To verify that the function executes as planned.

Actual Results:

Data structures for packet header, data header, and update data were properly filled in and passed to SDM_update_safety_data for each of the five requests.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Integration Test Plan

				

Integration ID:	Carrier Update

ITP ID: SDM-CU-006

Version Control ID: APL V01-B02	

Affected CSCI:	SDM

Integration Function:

Send, accept and process five separate mailbox requests for carrier snapshot add operations.

Use a subscriber list containing at least three subscribers, one of which is invalid.

Send results to OMH to forward to the subscribers.

Requirement to be validated:

SDM_update_data must receive a packet header, data header, and update data filled in with accurate information so that it can update the database.

SDM must call SL_fulfill_subscription to forward a snapshot update to the subscribers.

SDM must perform the above steps five times successively.

Test Tools, Drivers, or Special Conditions:

Use SQLPlus to view the newly added records and verify that they were written to the database properly.

Input Data:

Five database update requests, with valid data, and USDOT#’s not yet existing in the database.

Subscription list file containing the mail address for three or more subscribers, one of which is invalid.

Expected Outcome:

SDM_update_safety_data will receive the correct packet header, data header, and update data for each request.

SL_fulfill_subscription will call SDM_retrieve_safety_data to obtain the updated snapshot and request OMH to forward it to the subscribers for each request.

Test Procedure Steps:

Check packet header, data header, and update data passed to SDM_update_safety_data to verify that data structures are correctly filled in for the update requests.

Verify that SL_fulfill_subscription and SDM_retrieve_safety_data perform all processing necessary to enable OMH to forward a copy of each of the five updated snapshots to the subscribers.

Analysis Procedures:

�Integration Test Report

					

Integration ID: 	Carrier Update

ITP ID: SDM-CU-006

Version Control ID: APL V01-B02			Test Seq Number: 	01

Test Conductor:	Grace McGonnigal			Test Date: 7/1//96

Purpose of Test:

To verify that the function executes as planned.

Actual Results:

Data structures for packet header, data header, and update data were properly filled in and passed to SDM_update_safety_data. SDM_update_safety_data successfully added the five records to the database.

SL_fulfill_subscription correctly read the subscription list, and called SDM_retrieve_safety_data to retrieve the updated snapshots and forward information to OMH.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Integration Test Plan

				

Integration ID:	Carrier Update

ITP ID: OMH-CU-006

Version Control ID: APL V01-B02	

Affected CSCI:	OMH

Integration Function:

Send, accept and process five separate mailbox requests for carrier snapshot add operations.

Use a subscriber list containing at least three subscribers, one of which is invalid.

Send a copy of the updated snapshots to the subscribers.

Requirement to be validated:

OMH will forward mail messages containing copies of the newly added snapshots to the valid subscribers.

Having an invalid subscriber on the list will not cause a crash or processing problems.

Test Tools, Drivers, or Special Conditions:

MBX_Send routine is used to forward the messages to each subscriber’s mailbox. EudoraLite mail package is used to read the messages and verify that updated carrier snapshots was received by the subscribers.

Input Data:

A valid packet header, request header, and send request will be the input to OMH for each of five requests.

Expected Outcome:

OMH will query the database, obtain copies of the newly added records, and send it to the subscribers.

Test Procedure Steps:

Verify that OMH_query_database successfully retrieves the new records.

Verify that OMH_output_message_generator forwards the new snapshots to the subscribers.

Read messages in each subscriber’s mailbox. Verify that the correct snapshots were sent.

Check output screen for error messages concerning invalid subscriber.

Analysis Procedures:

�Integration Test Report

					

Integration ID: 	Carrier Update

ITP ID: OMH-CU-006

Version Control ID: APL V01-B02			Test Seq Number: 	01

Test Conductor:	Grace McGonnigal			Test Date: 7/1//96

Purpose of Test:

To verify that the function executes as planned.

Actual Results:

The five new carrier snapshots were sent to each valid subscriber’s mailbox.

An error message concerning “Unknown user” was printed on the output screen. The invalid subscriber caused no processing problems.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Integration Test Plan

				

Integration ID:	Carrier Update

ITP ID: IMH-CU-007

Version Control ID: APL V01-B02	

Affected CSCI:	IMH

Integration Function:

Send, accept and process five separate mailbox requests for carrier snapshot add operations when five add requests are already in the queue when IMH processing starts.

Use a subscriber list containing at least three subscribers, one of which is invalid.

Send results to SDM.

Requirement to be validated:

IMH must read a snapshot add request from the input mailbox

IMH must recognize it as a carrier snapshot add request

IMH must call the appropriate SDM routine to continue processing and provide it with the correct data types and the database update record itself.

IMH must be able to process five queued requests immediately upon being initialized, and then perform the above steps five successive times for additional update records.

Test Tools, Drivers, or Special Conditions:

The EudoraLite mail package was used to send the requests to the input mailbox. The MBX_Read routine was used to extract messages from the mailbox.

Input Data:

Ten database update requests, with valid data, and USDOT#’s not yet existing in the database.

Expected Outcome:

IMH will call SDM_update_safety_data with the correct packet header, data header, and update data for each update request.

Test Procedure Steps:

Check packet header, data header, and update data passed to SDM_update_safety_data to verify that data structures are correctly filled in for each update request.

Analysis Procedures:

Integration Test Report

					

Integration ID: 	Carrier Update

ITP ID: IMH-CU-007

Version Control ID: APL V01-B02			Test Seq Number: 	01

Test Conductor:	Grace McGonnigal			Test Date: 7/1//96

Purpose of Test:

To verify that the function executes as planned.

Actual Results:

Data structures for packet header, data header, and update data were properly filled in and passed to SDM_update_safety_data for each of the ten requests.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Integration Test Plan

				

Integration ID:	Carrier Update

ITP ID: SDM-CU-007

Version Control ID: APL V01-B02	

Affected CSCI:	SDM

Integration Function:

Send, accept and process five separate mailbox requests for carrier snapshot add operations when five requests are already in the queue when IMH process is started..

Use a subscriber list containing at least three subscribers, one of which is invalid.

Send results to OMH to forward to the subscribers.

Requirement to be validated:

SDM_update_data must receive a packet header, data header, and update data filled in with accurate information so that it can update the database.

SDM must call SL_fulfill_subscription to forward a snapshot update to the subscribers.

SDM must perform the above steps ten times successively.

Test Tools, Drivers, or Special Conditions:

Use SQLPlus to view the newly added records and verify that they were written to the database properly.

Input Data:

Ten database update requests, with valid data, and USDOT#’s not yet existing in the database.

Subscription list file containing the mail address for three or more subscribers, one of which is invalid.

Expected Outcome:

SDM_update_safety_data will receive the correct packet header, data header, and update data for each request.

SL_fulfill_subscription will call SDM_retrieve_safety_data to obtain the updated snapshot and request OMH to forward it to the subscribers for each request.

Test Procedure Steps:

Check packet header, data header, and update data passed to SDM_update_safety_data to verify that data structures are correctly filled in for the update requests.

Verify that SL_fulfill_subscription and SDM_retrieve_safety_data perform all processing necessary to enable OMH to forward a copy of each of the ten updated snapshots to the subscribers.

Analysis Procedures:

�Integration Test Plan

					

Integration ID: 	Carrier Update

ITP ID: SDM-CU-007

Version Control ID: APL V01-B02			Test Seq Number: 	01

Test Conductor:	Grace McGonnigal			Test Date: 7/1//96

Purpose of Test:

To verify that the function executes as planned.

Actual Results:

Data structures for packet header, data header, and update data were properly filled in and passed to SDM_update_safety_data. SDM_update_safety_data successfully added the ten records to the database.

SL_fulfill_subscription correctly read the subscription list, and called SDM_retrieve_safety_data to retrieve the updated snapshots and forward information to OMH.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Integration Test Plan

				

Integration ID:	Carrier Update

ITP ID: OMH-CU-007

Version Control ID: APL V01-B02	

Affected CSCI:	OMH

Integration Function:

Send, accept and process five separate mailbox requests for carrier snapshot add operations when five add request messages are already in the queue when IMH processing is started.

Use a subscriber list containing at least three subscribers, one of which is invalid.

Send a copy of the updated snapshots to the subscribers.

Requirement to be validated:

OMH will forward mail messages containing copies of the newly added snapshots to the valid subscribers.

Having an invalid subscriber on the list will not cause a crash or processing problems.

Test Tools, Drivers, or Special Conditions:

MBX_Send routine is used to forward the messages to each subscriber’s mailbox. EudoraLite mail package is used to read the messages and verify that updated carrier snapshots was received by the subscribers.

Input Data:

A valid packet header, request header, and send request will be the input to OMH for each of ten requests.

Expected Outcome:

OMH will query the database, obtain copies of the newly added records, and send it to the subscribers.

Test Procedure Steps:

Verify that OMH_query_database successfully retrieves the new records.

Verify that OMH_output_message_generator forwards the new snapshots to the subscribers.

Read messages in each subscriber’s mailbox. Verify that the correct snapshots were sent.

Check output screen for error messages concerning invalid subscriber.

Analysis Procedures:

�Integration Test Report

					

Integration ID: 	Carrier Update

ITP ID: OMH-CU-007

Version Control ID: APL V01-B02			Test Seq Number: 	01

Test Conductor:	Grace McGonnigal			Test Date: 7/1//96

Purpose of Test:

To verify that the function executes as planned.

Actual Results:

The ten new carrier snapshots were sent to each valid subscriber’s mailbox.

An error message concerning “Unknown user” was printed on the output screen. The invalid subscriber caused no processing problems.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________�

Appendix D - Unit Test (ADM)

Administrative Manager

Unit Test Plans and Test Reports�Unit Test Plan

				

Unit ID: ADM_ACCT_create_org_account

UTP ID: ACCT_CRE_ORG1

Version Control ID: SAIC V01-B03-01	

Unit Function:

It creates an organizational account, and multiple user accounts if the request is valid.

This function may insert an entry into ORG_ACCOUNT table, an entry into BANK table, and entries into USER table.

Requirement to be validated:

3.2.1.1

3.2.2

Test Tools, Drivers, or Special Conditions:

Test Driver: $/SAFER/SAIC SAFER/V01-B03-01 - SAIC Initial effort/ADM/Unit tests/UT drivers (June, 97)/ADM_ACCT_Org_Create_dvr1.c

Input Data:

Key input data:

Requester_user: John Smith with Create Org privilege

Org name = “Science Applications International Corporation”

Org Shortname = “SAIC”

Bank name = “First Virginia”

Bank branch = “McLean”

Two Users:

User1 = John Smith with Org Create Privilege

User2 = Joe M. Doe

Expected Outcome:

An entry keyed “SAIC_x” is added to Org_Account table.

An entry keyed “First Virginia” + “McLean” is added to Bank table.

Two entries keyed “smithjx” and “doejmx” are added to User_Account table.

Users “smithjx” and “smithjx_sub” are added to user database for the NT domain

Users “doejmx” and “smithjx_sub” are added to user database for the NT domain

The NT users shall belong to “SAFER Group” and have dial-in capabillity

Test Procedure Steps:

Create separate director for testing

Get all account manager module from $/SAFER/SAIC SAFER/V01-B03-01 - SAIC Initial effort/ADM in to this director

Create a new project in MS VC++ 5.0 compiler

Create the test driver that

Populates information in the unit test plan into the ADM_ACCT_org_info_t

Calls ADM_ACCT_create_org_account(..)

Build the executable

Run the executable

Analysis Procedures:

�Unit Test Report

					

Unit ID: ADM_ACCT_create_org_account

UTP ID: ACCT_CRE_ORG1	

Version Control ID:	SAIC V01-B03-01		Test Seq Number: 1

Test Conductor: � AUTHOR * MERGEFORMAT �Chuanlarp Satchavarodom�		Test Date: August 29, 1997

Purpose of Test:

Test on successful creation of organizational accounts and user accounts.

Actual Results:

Failed.

Organization is created but the user is not created. The debug mode stopped after calling ACCT_ADM_add_NT_users() which is under modification to support wider variety of user groups.

To-Do

Debug ACC_ADM_add_NT_users()

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

Unit ID: ADM_ACCT_create_org_account

UTP ID: ACCT_CRE_ORG1

Version Control ID: SAIC V01-B01	

Unit Function:

It creates an organizational account, and multiple user accounts if the request is valid.

This function may insert an entry into ORG_ACCOUNT table, an entry into BANK table, and entries into USER table.

Requirement to be validated:

3.2.1.1

3.2.2

Test Tools, Drivers, or Special Conditions:

Test Driver: \\PSAFER2\SAFER\SAIC SAFER\PingSAFER\V01-B03-01\ADM|ACCT\Unit_Test\Drivers\ADM_ACCT_Org_Create_dvr1.c

Input Data:

Key input data:

Requester_user_id = “jsmith”

Org name = “Science Applications International Corporation”

Org Shortname = “SAIC”

Bank name = “First Virginia”

Bank branch = “McLean”

Two Users:

User1 = “jsmith” with super user privileges

User2 = “jdoe”

Expected Outcome:

An entry keyed “SAIC_x” is added to Org_Account table.

An entry keyed “First Virginia” + “McLean” is added to Bank table.

Two entries keyed “jsmith” and “jdoe” are added to User_Account table.

Test Procedure Steps:

Analysis Procedures:

�Unit Test Report

					

Unit ID: ADM_ACCT_create_org_account

UTP ID: ACCT_CRE_ORG1	

Version Control ID: SAIC V01-B01			Test Seq Number: 1

Test Conductor: Ping Liang				Test Date: � TIME \@ "M/d/yy" �9/8/97�

Purpose of Test:

Test on successful creation of organizational accounts and user accounts.

Actual Results:

An organizational account keyed “SAIC_1” is inserted into Org_Account table.

A bank keyed “First Virginia” + “McLean” is inserted into Bank table.

Two users keyed “SAIC_1” + “jsmith” and “SAIC_1” + “jdoe” are inserted into User_Account table.

(Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

Unit Test Plan

Unit ID: ADM_ACCT_create_org_account

UTP ID: ACCT_CRE_ORG2

Version Control ID: SAIC V01-B01	

Unit Function:

It creates an organizational account, and multiple user accounts if the request is valid.

This function may insert an entry into ORG_ACCOUNT table, an entry into BANK table, and entries into USER table.

Requirement to be validated:

3.2.1.1

3.2.2

Test Tools, Drivers, or Special Conditions:

Special Conditions:

 An organization with name “Science Applications International Corporation” and no suborg name exists in the database.

Test Drivers:

\\PSAFER2\SAFER\SAIC SAFER\PingSAFER\V01-B03-01\ADM|ACCT\Unit_Test\Drivers\ADM_ACCT_Org_Create_dvr2.c

Input Data:

Key input data:

1. Requester_user_id = “jsmith”

 Org name = “Science Applications International Corporation”

 Org Shortname = “SAIC”

 Two Users:

 User1 = “jsmith” with super user privileges

 User2 = “jdoe”

Expected Outcome:

Appropriate error messages displayed (on the screen). No account will be created. No further processing on the request.

Test Procedure Steps:

Analysis Procedures:

�Unit Test Report

					

Unit ID: ADM_ACCT_create_org_account

UTP ID: ACCT_CRE_ORG2	

Version Control ID: SAIC V01-B01			Test Seq Number: 1

Test Conductor: Ping Liang				Test Date: � TIME \@ "M/d/yy" �9/8/97�

Purpose of Test:

Test on unsuccessful creation of organizational accounts and user accounts.

Actual Results:

Error message “Org exists, please provide a different suborg name to create a new account.” displayed on the screen.

No entries are added to any of the database tables.

Program terminated.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

Unit Test Plan

Unit ID: ADM_ACCT_create_org_account

UTP ID: ACCT_CRE_ORG3

Version Control ID: SAIC V01-B01	

Unit Function:

It creates an organizational account, and multiple user accounts if the request is valid.

This function may insert an entry into ORG_ACCOUNT table, an entry into BANK table, and entries into USER table.

Requirement to be validated:

3.2.1.1

3.2.2

Test Tools, Drivers, or Special Conditions:

Special Conditions:

 An organization with name “Science Applications International Corporation” and no suborg name exists in the database.

Test Drivers:

\\PSAFER2\SAFER\SAIC SAFER\PingSAFER\V01-B03-01\ADM|ACCT\Unit_Test\Drivers\ADM_ACCT_Org_Create_dvr3.c

Input Data:

Key input data:

1. Requester_user_id = “ssmith”

 Org name = “Science Applications International Corporation”

 Suborg name = “SAFER Program”

 Org Shortname = “SAIC”

 Two Users:

 User1 = “jsmith” with super user privileges

 User2 = “jdoe”

Expected Outcome:

Appropriate error messages displayed. No account will be created. No further processing on the request.

Test Procedure Steps:

Analysis Procedures:

�Unit Test Report

Unit ID: ADM_ACCT_create_org_account

UTP ID: ACCT_CRE_ORG3	

Version Control ID: SAIC V01-B01			Test Seq Number: 1

Test Conductor: Ping Liang				Test Date: � TIME \@ "M/d/yy" �9/8/97�

Purpose of Test:

Test on unsuccessful creation of organizational accounts and user accounts.

Actual Results:

Error message “Requester id is not in the user list to be created.” displayed on the screen.

No changes to any of the database tables.

Program terminated.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

Unit Test Plan

				

Unit ID: ADM_ACCT_create_org_account

UTP ID: ACCT_CRE_ORG4

Version Control ID: SAIC V01-B01	

Unit Function:

It creates an organizational account, and multiple user accounts if the request is valid.

This function may insert an entry into ORG_ACCOUNT table, an entry into BANK table, and entries into USER table.

Requirement to be validated:

3.2.1.1

3.2.2

Test Tools, Drivers, or Special Conditions:

Special Conditions:

 An organization with name “Science Applications International Corporation” and no suborg name exists in the database.

Test Drivers:

\\PSAFER2\SAFER\SAIC SAFER\PingSAFER\V01-B03-01\ADM|ACCT\Unit_Test\Drivers\ADM_ACCT_Org_Create_dvr4.c

Input Data:

Key input data:

1. Requester_user_id = “jsmith”

 Org name = “Science Applications International Corporation”

 Suborg name = “SAFER Program”

 Org Shortname = “SAIC”

 Two Users:

 User1 = “jsmith” without org-create privilege

 User2 = “jdoe”

Expected Outcome:

Appropriate error messages displayed. No account will be created. No further processing on the request.

Test Procedure Steps:

Analysis Procedures:

�Unit Test Report

					

Unit ID: ADM_ACCT_create_org_account

UTP ID: ACCT_CRE_ORG4	

Version Control ID: SAIC V01-B01			Test Seq Number: 1

Test Conductor: Ping Liang				Test Date: � TIME \@ "M/d/yy" �9/8/97�

Purpose of Test:

Test on unsuccessful creation of organizational accounts and user accounts.

Actual Results:

Error message “The requester does not have the privilege to create an org account.” displayed on the screen.

No change to any of the database tables.

Program terminated.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: ADM_ACCT_create_org_account

UTP ID: ACCT_CRE_ORG5

Version Control ID: SAIC V01-B01	

Unit Function:

It creates an organizational account, and multiple user accounts if the request is valid.

This function may insert an entry into ORG_ACCOUNT table, an entry into BANK table, and entries into USER table.

Requirement to be validated:

3.2.1.1

3.2.2

Test Tools, Drivers, or Special Conditions:

Special Conditions:

 An organization with account_id “SAIC_1”, name “Science Applications International Corporation” and suborg name “UNKNOWN” exists in the database.

Test Drivers:

\\PSAFER2\SAFER\SAIC SAFER\PingSAFER\V01-B03-01\ADM|ACCT\Unit_Test\Drivers\ADM_ACCT_Org_Create_dvr5.c

Input Data:

Key input data:

1. Requester_user_id = “jsmith”

 Org name = “Science Applications International Corporation”

 Suborg name = “SAFER Program”

 Org Shortname = “SAIC”

Bank name = “First Virginia”

Bank branch = “McLean”

 Three Users:

 User1 = “jsmith” with super user privileges

 User2 = “jsmith”

 User3 = “jdoe”

Expected Outcome:

An entry keyed “SAIC_2” added to Org_Account table.

No new entry added to Bank table since the bank already exists.

The first user is added to User_Account table.

Error message on the second user creation since the user exists.

The third user is added to User_Account table.

Test Procedure Steps:

Analysis Procedures:

Unit Test Report

					

Unit ID: ADM_ACCT_create_org_account

UTP ID: ACCT_CRE_ORG5	

Version Control ID: SAIC V01-B01			Test Seq Number: 1

Test Conductor: Ping Liang				Test Date: � TIME \@ "M/d/yy" �9/8/97�

Purpose of Test:

It tests on successful generation of an organizational account id and creations of an organizational account and user accounts. It also tests on continuing creation of next user when error happens on a user.

Actual Results:

Organizational account keyed “SAIC_2” created.

User account “jsmith” created.

Error creating user “jsmith”. Error message “User id jsmith has been taken, failed to create an account for smith.” displayed.

User account “jdoe” created.

No new bank created. The bank part of the org references an existing entry in BANK table.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: ADM_ACCT_create_user_account

UTP ID: ACCT_CRE_USER1

Version Control ID: SAIC V01-B01	

Unit Function:

It creates one or more user accounts if the request is valid.

This function may insert entries into USER_ACCOUNT table.

Requirement to be validated:

3.2.2

Test Tools, Drivers, or Special Conditions:

Test Driver: \\PSAFER2\SAFER\SAIC SAFER\PingSAFER\V01-B03-01\ADM|ACCT\Unit_Test\Drivers\ADM_ACCT_User_Create_dvr1.c

Special Conditions:

Org account SAIC_1 exists with one user “jsmith” who has create_user privilege.

Input Data:

Key input data:

Requester_user_id = “jsmith”

Account_id = “SAIC_1”

Two Users:

User1 = “jjones”

User2 = “jdoe”

Expected Outcome:

Two entries keyed “jjones” and “jdoe” of SAIC_1 are added to User_Account table.

Test Procedure Steps:

Analysis Procedures:

�Unit Test Report

					

Unit ID: ADM_ACCT_create_user_account

UTP ID: ACCT_CRE_USER1	

Version Control ID: SAIC V01-B01			Test Seq Number: 1

Test Conductor: Ping Liang				Test Date: � TIME \@ "M/d/yy" �9/8/97�

Purpose of Test:

Test on successful creation of user accounts.

Actual Results:

Two users keyed “SAIC_1” + “jjones” and “SAIC_1” + “jdoe” are inserted into User_Account table.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: ADM_ACCT_create_user_account

UTP ID: ACCT_CRE_USER2

Version Control ID: SAIC V01-B01	

Unit Function:

It creates one or more user accounts if the request is valid.

This function may insert entries into USER_ACCOUNT table.

Requirement to be validated:

3.2.2

Test Tools, Drivers, or Special Conditions:

Test Driver: \\PSAFER2\SAFER\SAIC SAFER\PingSAFER\V01-B03-01\ADM|ACCT\Unit_Test\Drivers\ADM_ACCT_User_Create_dvr2.c

Special Conditions:

Org account SAIC_1 exists with three users “jjones”, “jdoe”, and “jsmith”.

User “jsmith” has create_user privilege.

Input Data:

Key input data:

Requester_user_id = “jsmith”

Account_id = “SAIC_1”

User1 to create “jdoe”

User2 to create “mjohnson”

User3 with last name Jones to created (user id is not provided)

Expected Outcome:

Error message displayed while creating user “jdoe”

Successful creation of user “mjohnson”

Error message displayed while creating user with last name Jones

Test Procedure Steps:

Analysis Procedures:

�Unit Test Report

					

Unit ID: ADM_ACCT_create_user_account

UTP ID: ACCT_CRE_USER2	

Version Control ID: SAIC V01-B01			Test Seq Number: 1

Test Conductor: Ping Liang				Test Date: � TIME \@ "M/d/yy" �9/8/97�

Purpose of Test:

Test on unsuccessful creation of a user account since the user to create already exists.

Test on continuing creation of the next user even if error detected on the current one.

Actual Results:

Error creating user jdoe. Error message “User id jdoe has been taken, failed to create an account for Doe.” displayed on the screen.

User mjohnson created.

Error creating an account for Jones. Error message “User_id is not provided, can’t create user Jones.” displayed on the screen.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: ADM_ACCT_create_user_account

UTP ID: ACCT_CRE_USER3

Version Control ID: SAIC V01-B01	

Unit Function:

It creates one or more user accounts if the request is valid.

This function may insert entries into USER_ACCOUNT table.

Requirement to be validated:

3.2.2

Test Tools, Drivers, or Special Conditions:

Test Driver: \\PSAFER2\SAFER\SAIC SAFER\PingSAFER\V01-B03-01\ADM|ACCT\Unit_Test\Drivers\ADM_ACCT_User_Create_dvr3.c

Special Conditions:

Org account SAIC_1 exists with three users “jjones”, “jdoe”, and “jsmith”.

User “jsmith” has create_user privilege.

User “jdoe” does not have create_user privilege.

Input Data:

Key input data:

Requester_user_id = “jdoe”

Account_id = “SAIC_1”

User to create “mjoe”

Expected Outcome:

Error message displayed while creating user “mdoe”

Test Procedure Steps:

Analysis Procedures:

�Unit Test Report

					

Unit ID: ADM_ACCT_create_user_account

UTP ID: ACCT_CRE_USER2	

Version Control ID: SAIC V01-B01			Test Seq Number: 1

Test Conductor: Ping Liang				Test Date: � TIME \@ "M/d/yy" �9/8/97�

Purpose of Test:

Test on unsuccessful creation of a user account due to insufficient privileges.

Actual Results:

Error creating user mode. Error message “The requester does not have the privilege to create a user account.” displayed on the screen..

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: ADM_ACCT_create_user_account

UTP ID: ACCT_CRE_USER3

Version Control ID: SAIC V01-B01	

Unit Function:

It creates one or more user accounts if the request is valid.

This function may insert entries into USER_ACCOUNT table.

Requirement to be validated:

3.2.2

Test Tools, Drivers, or Special Conditions:

Test Driver: \\PSAFER2\SAFER\SAIC SAFER\PingSAFER\V01-B03-01\ADM|ACCT\Unit_Test\Drivers\ADM_ACCT_User_Create_dvr3.c

Special Conditions:

Org account SAIC_1 exists with three users “jjones”, “jdoe”, and “jsmith”.

User “jsmith” has create_user privilege.

User “jdoe” does not have create_user privilege.

Input Data:

Key input data:

Requester_user_id = “jdoe”

Account_id = “SAIC_1”

User to create “mjoe”

Expected Outcome:

Error message displayed while creating user “mdoe”

Test Procedure Steps:

Analysis Procedures:

�Unit Test Report

					

Unit ID: ADM_ACCT_create_user_account

UTP ID: ACCT_CRE_USER3	

Version Control ID: SAIC V01-B01			Test Seq Number: 1

Test Conductor: Ping Liang				Test Date: � TIME \@ "M/d/yy" �9/8/97�

Purpose of Test:

Test on unsuccessful creation of a user account due to insufficient privileges.

Actual Results:

Error creating user mode. Error message “The requester does not have the privilege to create a user account.” displayed on the screen..

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: ADM_ACCT_delete_org_account

UTP ID: ACCT_DEL_ORG1

Version Control ID: SAIC V01-B01	

Unit Function:

This function deletes an organizational account and all its user accounts.

It may delete an entry in ORG_ACCOUNT table, an entry in BANK table and entries in USER_ACCOUNT table.

Requirement to be validated:

3.2.1

3.2.2

Test Tools, Drivers, or Special Conditions:

Test Driver: \\PSAFER2\SAFER\SAIC SAFER\PingSAFER\V01-B03-01\ADM|ACCT\Unit_Test\Drivers\ADM_ACCT_Org_Delete_dvr1.c

Special Conditions:

Org “SAIC_1” exists with two users “jsmith” and ‘jdoe”

User “jdoe” does NOT have delete-org privilege

Input Data:

Requesting_user_id = “jdoe”

Org to delete is “SAIC_1”

Expected Outcome:

Error message displayed on the screen.

Test Procedure Steps:

Analysis Procedures:

�Unit Test Report

					

Unit ID: ADM_ACCT_delete_org_account

UTP ID: ACCT_DEL_ORG1	

Version Control ID: SAIC V01-B01			Test Seq Number: 1

Test Conductor: Ping Liang				Test Date: 8/7/96

Purpose of Test:

Test on unsuccessful deletion of an org account due to insufficient privileges.

Actual Results:

Error message “The requester does not have the privilege to delete an org account.” displayed on the screen.

Org account SAIC_1 still exists.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: ADM_ACCT_delete_org_account

UTP ID: ACCT_DEL_ORG2

Version Control ID: SAIC V01-B01	

Unit Function:

This function deletes an organizational account and all its user accounts.

It may delete an entry in ORG_ACCOUNT table, an entry in BANK table and entries in USER_ACCOUNT table.

Requirement to be validated:

3.2.1

3.2.2

Test Tools, Drivers, or Special Conditions:

Test Driver: \\PSAFER2\SAFER\SAIC SAFER\PingSAFER\V01-B03-01\ADM|ACCT\Unit_Test\Drivers\ADM_ACCT_Org_Delete_dvr2.c

Special Conditions:

Org “SAIC_1” exists with two users “jsmith” and ‘jdoe”

Org “SAIC_2” exists with one user “jjones”.

Input Data:

Requesting_user_id = “jsmith”

Org to delete is “SAIC_2”

Expected Outcome:

Error message displayed on the screen.

Test Procedure Steps:

Analysis Procedures:

�Unit Test Report

					

Unit ID: ADM_ACCT_delete_org_account

UTP ID: ACCT_DEL_ORG2	

Version Control ID: SAIC V01-B01			Test Seq Number: 1

Test Conductor: Ping Liang				Test Date: 8/7/96

Purpose of Test:

Test on unsuccessful deletion of an org account since the requester is not associated with the org.

Actual Results:

Error message “Requester is not associated with the org.” displayed on the screen.

Org account SAIC_2 still exists.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: ADM_ACCT_delete_org_account

UTP ID: ACCT_DEL_ORG3

Version Control ID: SAIC V01-B01	

Unit Function:

This function deletes an organizational account and all its user accounts.

It may delete an entry in ORG_ACCOUNT table, an entry in BANK table and entries in USER_ACCOUNT table.

Requirement to be validated:

3.2.1

3.2.2

Test Tools, Drivers, or Special Conditions:

Test Driver: \\PSAFER2\SAFER\SAIC SAFER\PingSAFER\V01-B03-01\ADM|ACCT\Unit_Test\Drivers\ADM_ACCT_Org_Delete_dvr3.c

Special Conditions:

Org “SAIC_1” exists with two users “jsmith” and ‘jdoe”

User “jsmith” has delete-org privilege

Org “SAIC_2” exists with 3 users “jsmith”, “jdoe” and “jjones”

Input Data:

Requesting_user_id = “jsmith”

Org to delete is “SAIC_1”

Expected Outcome:

Org account SAIC_1 is deleted.

Users “jsmith” and “jdoe” associated with “SAIC_1” are deleted.

Users “jsmith” and “jdoe” associated with “SAIC_2” still exist.

Test Procedure Steps:

Analysis Procedures:

�Unit Test Report

					

Unit ID: ADM_ACCT_delete_org_account

UTP ID: ACCT_DEL_ORG3	

Version Control ID: SAIC V01-B01			Test Seq Number: 1

Test Conductor: Ping Liang				Test Date: 8/7/96

Purpose of Test:

Test on successful deletion of an org account and its user accounts.

Actual Results:

Org account SAIC_1 does not exists anymore.

User accounts “jsmith”, “jdoe” with account_id “SAIC_1” do not exist anymore.

User accounts “jsmith”, “jdoe” with account_id “SAIC_2” still exist.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: ADM_ACCT_delete_user_account

UTP ID: ACCT_DEL_USER1

Version Control ID: SAIC V01-B01	

Unit Function:

This function removes an user account associated with an org from the database.

It deletes an entry in USER_ACCOUNT table.

Requirement to be validated:

3.2.2

Test Tools, Drivers, or Special Conditions:

Test Driver: \\PSAFER2\SAFER\SAIC SAFER\PingSAFER\V01-B03-01\ADM|ACCT\Unit_Test\Drivers\ADM_ACCT_User_Delete_dvr1.c

Special Conditions:

Org “SAIC_2” exists with three users “jsmith”, “jjones” and ‘jdoe”

User “jdoe” does NOT have delete-user privilege

Input Data:

Requesting_user_id = “jdoe”

User to delete is “jjones”

Expected Outcome:

Error message displayed on the screen.

Test Procedure Steps:

Analysis Procedures:

�Unit Test Report

					

Unit ID: ADM_ACCT_delete_user_account

UTP ID: ACCT_DEL_USER1	

Version Control ID: SAIC V01-B01			Test Seq Number: 1

Test Conductor: Ping Liang				Test Date: 8/7/96

Purpose of Test:

Test on unsuccessful deletion of an user account due to insufficient privileges.

Actual Results:

Error message “The requester does not have the privilege to delete a user account.” displayed on the screen.

User account “jjones” associated with “SAIC_2” still exists.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: ADM_ACCT_delete_user_account

UTP ID: ACCT_DEL_USER2

Version Control ID: SAIC V01-B01	

Unit Function:

This function removes an user account associated with an org from the database.

It deletes an entry in USER_ACCOUNT table.

Requirement to be validated:

3.2.2

Test Tools, Drivers, or Special Conditions:

Test Driver: \\PSAFER2\SAFER\SAIC SAFER\PingSAFER\V01-B03-01\ADM|ACCT\Unit_Test\Drivers\ADM_ACCT_User_Delete_dvr2.c

Special Conditions:

Org “SAIC_2” exists with three users “jsmith”, “jjones” and ‘jdoe”

Org “SAIC_1” exists with one user “pjones”

Input Data:

Requesting_user_id = “pjones”

User to delete = “jjones”

Expected Outcome:

Error message displayed on the screen.

Test Procedure Steps:

Analysis Procedures:

�Unit Test Report

					

Unit ID: ADM_ACCT_delete_user_account

UTP ID: ACCT_DEL_USER2	

Version Control ID: SAIC V01-B01			Test Seq Number: 1

Test Conductor: Ping Liang				Test Date: 8/7/96

Purpose of Test:

Test on unsuccessful deletion of an user account since the requester is not associated with the org the user is in.

Actual Results:

Error message “Requester is not associated with the org.” displayed on the screen.

User account “jjones” with org account SAIC_2 still exists.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: ADM_ACCT_delete_user_account

UTP ID: ACCT_DEL_USER3

Version Control ID: SAIC V01-B01	

Unit Function:

This function removes an user account associated with an org from the database.

It deletes an entry in USER_ACCOUNT table.

Requirement to be validated:

3.2.2

Test Tools, Drivers, or Special Conditions:

Test Driver: \\PSAFER2\SAFER\SAIC SAFER\PingSAFER\V01-B03-01\ADM|ACCT\Unit_Test\Drivers\ADM_ACCT_User_Delete_dvr3.c

Special Conditions:

Org “SAIC_2” exists with three users “jsmith”, “jjones” and ‘jdoe”

User “jsmith” has delete-user privilege

Input Data:

Requesting_user_id = “jsmith”

Account_id = “SAIC_2”

Users to delete are “jjones”, “mdoe”, “jdoe” and “jsmith”

Expected Outcome:

Successful deletion of user “jjones”

Error message diaplayed on the screen while deleting user “mdoe”

Successful deletion of user “jdoe”

Error message displayed on the screen while deleting user “jsmith”

Test Procedure Steps:

Analysis Procedures:

�Unit Test Report

					

Unit ID: ADM_ACCT_delete_user_account

UTP ID: ACCT_DEL_USER3	

Version Control ID: SAIC V01-B01			Test Seq Number: 1

Test Conductor: Ping Liang				Test Date: 8/7/96

Purpose of Test:

Test on successful deletion of two user accounts and unsuccessful deletion of the last user of the org.

Test on detecting errors when deleting a user that is not associated with the org.

Test on continuing deleting next user when error happens.

Actual Results:

User “jjones” with SAIC_2 deleted

Error deleting user “mdoe”. Error message “SDB error in deleting user.”

User “jdoe” with SAIC_2 deleted

User “jsmith” with SAIC_2 was not deleted. Error message “The user is the last user. Cannot delete.” displayed on the screen.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: ADM_ACCT_delete_user_account

UTP ID: ACCT_DEL_USER3A

Version Control ID: SAIC V01-B01	

Unit Function:

This function removes an user account associated with an org from the database.

It deletes an entry in USER_ACCOUNT table.

Requirement to be validated:

3.2.2

Test Tools, Drivers, or Special Conditions:

Test Driver: \\PSAFER2\SAFER\SAIC SAFER\PingSAFER\V01-B03-01\ADM|ACCT\Unit_Test\Drivers\ADM_ACCT_User_Delete_dvr3.c

Special Conditions:

Org “SAIC_2” exists with three users “jsmith”, “jjones” and ‘jdoe”

User “jsmith” has delete-user privilege

Input Data:

Requesting_user_id = “jsmith”

Account_id = “SAIC_2”

Users to delete are “jjones”, “mdoe”, “jdoe” and “jsmith”

Expected Outcome:

Successful deletion of user “jjones”

Error message diaplayed on the screen while deleting user “mdoe”

Successful deletion of user “jdoe”

Error message displayed on the screen while deleting user “jsmith”

Test Procedure Steps:

Analysis Procedures:

�Unit Test Report

					

Unit ID: ADM_ACCT_delete_user_account

UTP ID: ACCT_DEL_USER3A	

Version Control ID: SAIC V01-B01			Test Seq Number: 2

Test Conductor: Ping Liang				Test Date: 8/12/96

Purpose of Test:

Rerun previous test because of code changes. Currently, the requester can not delete himself which automatically meets the requirement of not to delete the last user.

Actual Results:

User “jjones” with SAIC_2 deleted

Error deleting user “mdoe”. Error message “SDB error in deleting user.”

User “jdoe” with SAIC_2 deleted

User “jsmith” with SAIC_2 was not deleted. Error message “Can not delete self.” displayed on the screen.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: ADM_ACCT_update_org_account

UTP ID: ACCT_UPD_ORG1

Version Control ID: SAIC V01-B01	

Unit Function:

This function updates fields of an organizational accounts as well as fields of the user accounts associated with the organizational account.

It may update an entry in ORG_ACCOUNT table, an entry in BANK table and entries in USER_ACCOUNT table.

Requirement to be validated:

3.2.1

3.2.2.1

Test Tools, Drivers, or Special Conditions:

Test Driver: \\PSAFER2\SAFER\SAIC SAFER\PingSAFER\V01-B03-01\ADM|ACCT\Unit_Test\Drivers\ADM_ACCT_Org_Update_dvr1.c

Special Conditions:

Org “SAIC_1” exists with two users “jsmith” and ‘jdoe”

User “jsmith” exists with update-org privilege

Input Data:

Requesting_user_id = “jsmith”

change org phone# to 7035554444

change bank contact_name to “Mary Jones”

change user “jdoe” account status to inactive

Expected Outcome:

Org SAIC_1’s phone# changed to 7035554444

Org SAIC_1’s bank contact person name changed to Mary Jones

User jdoe’s account status changed to inactive

Test Procedure Steps:

Analysis Procedures:

�Unit Test Report

					

Unit ID: ADM_ACCT_update_org_account

UTP ID: ACCT_UPD_ORG1	

Version Control ID: SAIC V01-B01			Test Seq Number: 1

Test Conductor: Ping Liang				Test Date: 8/5/96

Purpose of Test:

Test on successful updating of a field in Org_Account table, a field in Bank_Account table and a field in User_Account table with one org-update request. Also tests on update of a field of character string type as well as update of a field of character type.

Actual Results:

Org SAIC_1’s phone has been changed to 7035554444

Contact_name of the bank with which SAIC_1 is associated has been changed to Mary Jones

User jdoe’s acct_status has been changed to ‘I’

Successful update messages displayed on the screen

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: ADM_ACCT_update_org_account

UTP ID: ACCT_UPD_ORG2_1

Version Control ID: SAIC V01-B01	

Unit Function:

This function updates fields of an organizational accounts as well as fields of the user accounts associated with the organizational account.

It may update an entry in ORG_ACCOUNT table, an entry in BANK table and entries in USER_ACCOUNT table.

Requirement to be validated:

3.2.1

3.2.2.1

Test Tools, Drivers, or Special Conditions:

Test Driver: \\PSAFER2\SAFER\SAIC SAFER\PingSAFER\V01-B03-01\ADM|ACCT\Unit_Test\Drivers\ADM_ACCT_Org_Update_dvr2.c

Special Conditions:

Org “SAIC_1” exists with two users “jsmith” and ‘jdoe”

User “jsmith” exists with update-org privilege

SAIC_1 banks with “First Virginia”, “McLean” branch and no other orgs are associated that branch.

Input Data:

Requesting_user_id = “jsmith”

Change org SAIC_1’s bank_branch to “FALLS CHURCH”

Change or g SAIC_1’s bank_account_id to “1234567890”

Expected Outcome:

Org SAIC_1 is associated with a new bank branch (a new entry in bank table)

Bank “First Virginia” + “McLean” is removed from Bank table

Bank_account_id of SAIC_1 in Org_Account table is changed to “1234567890”

Test Procedure Steps:

Analysis Procedures:

�Unit Test Report

					

Unit ID: ADM_ACCT_update_org_account

UTP ID: ACCT_UPD_ORG2_1	

Version Control ID: SAIC V01-B01			Test Seq Number: 1

Test Conductor: Ping Liang				Test Date: 8/6/96

Purpose of Test:

Test on changes of an org’s bank to see if a new bank is created, and if the un-referenced old bank is deleted.

Actual Results:

a new bank entry whose bank_branch = “FALLS CHURCH” gets created

bank_account_id of SAIC_1 is updated to “1234567890”

old bank entry whose bank_branch = “McLean” is NOT removed. BUG!

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit ID: ADM_ACCT_update_org_account

UTP ID: ACCT_UPD_ORG2_2

Version Control ID: SAIC V01-B01	

Unit Function:

This function updates fields of an organizational accounts as well as fields of the user accounts associated with the organizational account.

It may update an entry in ORG_ACCOUNT table, an entry in BANK table and entries in USER_ACCOUNT table.

Requirement to be validated:

3.2.1

3.2.2.1

Test Tools, Drivers, or Special Conditions:

Test Driver: \\PSAFER2\SAFER\SAIC SAFER\PingSAFER\V01-B03-01\ADM|ACCT\Unit_Test\Drivers\ADM_ACCT_Org_Update_dvr2.c

Special Conditions:

Org “SAIC_1” exists with two users “jsmith” and ‘jdoe”

User “jsmith” exists with update-org privilege

SAIC_1 banks with “First Virginia”, “McLean” branch and no other orgs are associated that branch.

Input Data:

Requesting_user_id = “jsmith”

Change org SAIC_1’s bank_branch to “FALLS CHURCH”

Change or g SAIC_1’s bank_account_id to “1234567890”

Expected Outcome:

Org SAIC_1 is associated with a new bank branch (a new entry in bank table)

Bank “First Virginia” + “McLean” is removed from Bank table

Bank_account_id of SAIC_1 in Org_Account table is changed to “1234567890”

Test Procedure Steps:

Analysis Procedures:

�Unit Test Report

					

Unit ID: ADM_ACCT_update_org_account

UTP ID: ACCT_UPD_ORG2_2	

Version Control ID: SAIC V01-B01			Test Seq Number: 2

Test Conductor: Ping Liang				Test Date: 8/6/96

Purpose of Test:

Test on changes of an org’s bank to see if a new bank is created, and if the un-referenced old bank is deleted.

Bug was found at previous test and was fixed. Rerun the test.

Actual Results:

a new bank entry whose bank_branch = “FALLS CHURCH” gets created

bank_account_id of SAIC_1 is updated to “1234567890”

old bank entry whose bank_branch = “McLean” is removed.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: ADM_ACCT_update_org_account

UTP ID: ACCT_UPD_ORG3

Version Control ID: SAIC V01-B01	

Unit Function:

This function updates fields of an organizational accounts as well as fields of the user accounts associated with the organizational account.

It may update an entry in ORG_ACCOUNT table, an entry in BANK table and entries in USER_ACCOUNT table.

Requirement to be validated:

3.2.1

Test Tools, Drivers, or Special Conditions:

Test Driver: \\PSAFER2\SAFER\SAIC SAFER\PingSAFER\V01-B03-01\ADM|ACCT\Unit_Test\Drivers\ADM_ACCT_Org_Update_dvr3.c

Special Conditions:

Org “SAIC_1” exists with two users “jsmith” and ‘jdoe”

SAIC_1’s phone = “7035554444”

User “jdoe” does NOT have update-org privilege.

Input Data:

Requesting_user_id = “jdoe”

change org phone# to 7034445555

Expected Outcome:

No change is made. Error message displayed on the screen.

Test Procedure Steps:

Analysis Procedures:

�Unit Test Report

					

Unit ID: ADM_ACCT_update_org_account

UTP ID: ACCT_UPD_ORG3	

Version Control ID: SAIC V01-B01			Test Seq Number: 1

Test Conductor: Ping Liang				Test Date: 8/6/96

Purpose of Test:

Test on unsuccessful update on org field due to insufficient privileges.

Actual Results:

Error message “The requester does not have the privilege to update an org account.” displayed on the screen.

SAIC_1’s phone remains “7035554444”.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: ADM_ACCT_update_org_account

UTP ID: ACCT_UPD_ORG3

Version Control ID: SAIC V01-B01	

Unit Function:

This function updates fields of an organizational accounts as well as fields of the user accounts associated with the organizational account.

It may update an entry in ORG_ACCOUNT table, an entry in BANK table and entries in USER_ACCOUNT table.

Requirement to be validated:

3.2.1

Test Tools, Drivers, or Special Conditions:

Test Driver: \\PSAFER2\SAFER\SAIC SAFER\PingSAFER\V01-B03-01\ADM|ACCT\Unit_Test\Drivers\ADM_ACCT_Org_Update_dvr3.c

Special Conditions:

Org “SAIC_1” exists with two users “jsmith” and ‘jdoe”

SAIC_1’s phone = “7035554444”

User “jdoe” does NOT have update-org privilege.

Input Data:

Requesting_user_id = “jdoe”

change org phone# to 7034445555

Expected Outcome:

No change is made. Error message displayed on the screen.

Test Procedure Steps:

Analysis Procedures:

�Unit Test Report

					

Unit ID: ADM_ACCT_update_org_account

UTP ID: ACCT_UPD_ORG3	

Version Control ID: SAIC V01-B01			Test Seq Number: 1

Test Conductor: Ping Liang				Test Date: 8/6/96

Purpose of Test:

Test on unsuccessful update on org field due to insufficient privileges.

Actual Results:

Error message “The requester does not have the privilege to update an org account.” displayed on the screen.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: ADM_ACCT_update_user_account

UTP ID: ACCT_UPD_USER1

Version Control ID: SAIC V01-B01	

Unit Function:

This function updates fields of user accounts. A user can update only a subset field of its own account unless the user has update-user privilege.

It may update entries in USER_ACCOUNT table.

Requirement to be validated:

3.2.2.1

3.2.3.1

Test Tools, Drivers, or Special Conditions:

Test Driver: \\PSAFER2\SAFER\SAIC SAFER\PingSAFER\V01-B03-01\ADM|ACCT\Unit_Test\Drivers\ADM_ACCT_User_Update_dvr1.c

Special Conditions:

Org “SAIC_2” exists with two users “jsmith” and ‘jdoe”

User “jsmith” exists with update-user privilege

User “jdoe” does not have update-user privilege

Input Data:

Requesting_user_id = “jdoe”

1. Change his phone# to 7035554444

2. Give himself create-org privileges

3. Change user “jsmith” phone number to 7035554444

Expected Outcome:

jdoe’s phone# changed to 7035554444

Error changing create-org privileges, error message displayed

Error changing jsmith’s phone#, error message displayed

Test Procedure Steps:

Analysis Procedures:

�Unit Test Report

					

Unit ID: ADM_ACCT_update_user_account

UTP ID: ACCT_UPD_USER1	

Version Control ID: SAIC V01-B01			Test Seq Number: 1

Test Conductor: Ping Liang				Test Date: 8/7/96

Purpose of Test:

Test on successful updating of a updatable field of the requester himself.

Test on unsuccessful updating of a field that requires special privileges.

Test on unsuccessful updating other user’s info due to insufficient privileges.

Actual Results:

User jdoe’s phone has been changed to 7035554444

Error message “User jdoe does not have the privilege to update the field.” displayed on the screen when jdoe trying to change his create-org-priv.

Error message “Do not have privilege to update user jsmith.” displayed on screen when user jdoe trying to update jsmith’s phone number.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: ADM_ACCT_update_user_account

UTP ID: ACCT_UPD_USER2

Version Control ID: SAIC V01-B01	

Unit Function:

This function updates fields of user accounts. A user can update only a subset field of its own account unless the user has update-user privilege.

It may update entries in USER_ACCOUNT table.

Requirement to be validated:

3.2.2.1

3.2.3.1

Test Tools, Drivers, or Special Conditions:

Test Driver: \\PSAFER2\SAFER\SAIC SAFER\PingSAFER\V01-B03-01\ADM|ACCT\Unit_Test\Drivers\ADM_ACCT_User_Update_dvr2.c

Special Conditions:

Org “SAIC_2” exists with two users “jsmith” and ‘jdoe”

User “jsmith” exists with update-user privilege

Input Data:

Requesting_user_id = “jsmith”

1. Change his own phone# to 7035554444

2. Change user “sdoe” phone number to 7035554444

3. Give user jdoe create-org privileges

Expected Outcome:

jsmith’s phone# changed to 7035554444

Error changing user sdoe’s phone number, error message displayed

jdoe has create-org privilege

Test Procedure Steps:

Analysis Procedures:

�Unit Test Report

					

Unit ID: ADM_ACCT_update_user_account

UTP ID: ACCT_UPD_USER2	

Version Control ID: SAIC V01-B01			Test Seq Number: 1

Test Conductor: Ping Liang				Test Date: 8/7/96

Purpose of Test:

Test on successful updating of a updatable field of the requester himself.

Test on unsuccessful updating of non-exist user.

Test on successful updating other user’s info with update-user privileges.

Actual Results:

User jsmith’s phone has been changed to 7035554444

Error message “User sdoe does not exist, update failed.” displayed on the screen when jsmith trying to update user sdoe

User jdoe now has create-org privilege

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�

Appendix E - Unit Test (SLP)

Subscription List Processor

Unit Test Plans and Test Reports�Unit Test Plan

Date: 8/27/97			

Unit ID: slp_append_query		

UTP ID: SLP_APPEND_QUERY01

Version Control ID: 142dev version 2

Unit Function:

This function appends a query to an existing subscription. Before appending, this function first verifies that the query is not already part of the subscription. If it is a duplicate, no action is taken.

Requirement to be validated:

?

Test Tools, Drivers, or Special Conditions:

The function may be tested by calling the test function slp_create, and using the microsoft developer studio to halt execution at the call to slp_append_query, modifying the input parameters, and then stepping over the function an examining the database table for changes. The table “subscriber_parms” must NOT have a row containing the input data prior to this test.

Input Data:

new_subscription.query_parms[0].parm_number = SAFER_DOT_PARAM

new_subscription_query_parms[0].parm_value = 654123

new_subscription_query_parms[1].parm_value[0] = ‘\0’;

Expected Outcome:

A new entry in the database table “subscriber_parms”

Test Procedure Steps:

Set breakpoint in test_slp_append_query at the first call to slp_append_query.

Select “Test->Go” from MS Developer menu.

When trap occurs, modify input parameters to match input data above.

Use SqlPlus to examine database table “subscriber_parms” and make sure matching query does not exist.

Step over slp_append_query and examine database.

Analysis Procedures:

If database table “subscriber_parms” has correct new entry, AND slp_append_query() returns SLP_OK, then function has executed successfully.

�Unit Test Report

					

Unit ID: slp_append_query

UTP ID: SLP_APPEND_QUERY01

Version Control ID: 142dev version 2:			Test Seq Number: 	01

Test Conductor: Curt Stapleton				Test Date: 8/27/97

Purpose of Test:

To test successful execution of slp_append_query for the NEW query case.

Actual Results:

function placed new query into subscriber_parms table

___X__	PASS	_____	FAIL

(

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

Date: 8/27/97			

Unit ID: slp_append_query		

UTP ID: SLP_APPEND_QUERY02

Version Control ID: 142dev version 2

Unit Function:

This function appends a query to an existing subscription. Before appending, this function first verifies that the query is not already part of the subscription. If it is a duplicate, no action is taken.

Requirement to be validated:

?

Test Tools, Drivers, or Special Conditions:

The function may be tested by calling the test function test_slp_append_query, and using the microsoft developer studio to halt execution at the call to slp_append_query, modifying the input parameters, and then stepping over the function an examining the database table for changes. The table “subscriber_parms” must NOT have a row containing the input data.

Input Data:

new_subscription.query_parms[0].parm_number = SAFER_DOT_PARAM

new_subscription_query_parms[0].parm_value = 654123

new_subscription_query_parms[1].parm_value[0] = ‘\0’;

Expected Outcome:

No change to database table “subscriber_parms”

Test Procedure Steps:

Set breakpoint in test_slp_append_query at the first call to slp_append_query.

Select “Test->Go” from MS Developer menu.

When trap occurs, modify input parameters to match input data above.

Use SqlPlus to examine database table “subscriber_parms” and make sure matching query does exist.

Step over slp_append_query and examine database.

Analysis Procedures:

If database table “subscriber_parms” has not been affected, AND slp_append_query() returns SLP_OK then function has executed successfully.

�Unit Test Report

					

Unit ID: slp_append_query

UTP ID: SLP_APPEND_QUERY02

Version Control ID: 142dev version 2			Test Seq Number: 	01

Test Conductor: Curt Stapleton				Test Date: 8/27/97

Purpose of Test:

To test successful execution of slp_append_query for the ALREADY EXISTS query case.

Actual Results:

function did not place new query into subscriber_parms table

___X__	PASS	_____	FAIL

(Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Date: 8/27/97				

Unit ID: slp_append_query		

UTP ID: SLP_APPEND_QUERY03

Version Control ID: 142dev version 2	

Unit Function:

This function appends a query to an existing subscription. Before appending, this function first verifies that the query is not already part of the subscription. If it is a duplicate, no action is taken.

Requirement to be validated:

?

Test Tools, Drivers, or Special Conditions:

The function may be tested by calling the test function test_slp_append_query, and using the microsoft developer studio to halt execution at the call to slp_append_query, modifying the input parameters, and then stepping over the function an examining the database table for changes.

Input Data:

new_subscription.subscription_id = 0

Expected Outcome:

No change to database table “subscriber_parms” , and SLP_ERROR will be returned

Test Procedure Steps:

Set breakpoint in test_slp_append_query at the first call to slp_append_query.

Select “Test->Go” from MS Developer menu.

When trap occurs, modify input parameters to match input data above.

Step over slp_append_query and examine database.

Analysis Procedures:

If database table “subscriber_parms” has not changed AND slp_append_query() returns SLP_ERROR then function has executed successfully.

�Unit Test Report

					

Unit ID: slp_append_query

UTP ID: SLP_APPEND_QUERY03

Version Control ID: 142dev version 2			Test Seq Number: 	01

Test Conductor: Curt Stapleton				Test Date: 8/27/97

Purpose of Test:

To test successful execution of slp_append_query for non-existent subscription case.

Actual Results:

function returned SLP_ERROR without making any database changes.

___X__	PASS	_____	FAIL

(Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

Date: 8/27/97			

Unit ID: base_to_the_power		

UTP ID: BASE_TO_THE_POWER01

Version Control ID: 142dev version 2: slp_mask_utils.cpp

Unit Function:

This function returns the value of x to the y.

Requirement to be validated:

?

Test Tools, Drivers, or Special Conditions:

The function may be tested by calling the function with a random set of values including exception cases such as exponents of 0, 1, and < 0.

Input Data:

base = 2, power = 0

base = 3, power = 1

base = 4, power = 8

base = -4, power = 3

base = 5, power = -4

Expected Outcome:

1

3

 65536

-64

0

Test Procedure Steps:

Set breakpoint in test_slp at the first call to base_to_the_power.

Select “Test->Go” from MS Developer menu.

When trap occurs, modify input parameters to match input data above.

Step over base_to_the_power and examine result.

Analysis Procedures:

If results match the “expected outcome” above, then function executed successfully

�Unit Test Report

					

Unit ID: base_to_the_power		

UTP ID: BASE_TO_THE_POWER01

Version Control ID: 142dev version 2: slp_mask_utils.cpp 	Test Seq Number: 	01

Test Conductor: Curt Stapleton				Test Date: 8/27/97

Purpose of Test:

To test successful execution of base_to_the_power.

Actual Results:

Function failed for the power < 0 case

_____	PASS	__X__	FAIL

(Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

Date: 8/20/97			

Unit ID: calculate_event_mask		

UTP ID: CALCULATE_EVENT_MASK01

Version Control ID: 142dev version 2: slp_mask_utils.cpp

Unit Function:

This function calculates a subscribers complete set of event mask words given a list of events

Requirement to be validated:

?

Test Tools, Drivers, or Special Conditions:

The function may be tested by calling the test functions slp_build_subscription_req and test_slp_create, and using the microsoft developer studio to halt execution at the call to calculate_event_mask and stepping through the function to verify correctness. The function slp_build_subscription_req should first be modified to add appropriate events to the request.

Input Data:

sub_req.elements[0].event_name = SLP_EVENT_NULL; // 0

sub_req.elements[0].event_type = SLP_SIMPLE;

sub_req.elements[1].event_name = SLP_CS_EV_QUANTITY_POWER_UNITS; // 30

sub_req.elements[1].event_type = SLP_SIMPLE;

sub_req.elements[2].event_name = SLP_CS_EV_ISS_SCORE; // 241

sub_req.elements[2].event_type = SLP_SIMPLE;

sub_req.elements[3].event_name = SLP_CS_EV_MAIL_ZIP_PLUS; // 27

sub_req.elements[3].event_type = SLP_SIMPLE;

sub_req.elements[4].event_name = SLP_CS_EV_WORK_INDIAN;	// 55

sub_req.elements[4].event_type = SLP_SIMPLE;

sub_req.elements[5].event_name = SLP_CS_EV_WORK_OTHER;	// 56

sub_req.elements[5].event_type = SLP_SIMPLE;

sub_req.elements[6].event_name = SLP_CS_EV_HAZMATS_10;	// 123

sub_req.elements[6].event_type = SLP_SIMPLE;

sub_req.elements[7].event_name = SLP_CS_EV_VIOLATION_MEDICAL_CERTIFICATE;	// 156

sub_req.elements[7].event_type = SLP_SIMPLE;

sub_req.elements[8].event_name = SLP_CS_EV_OOS_REPORT_NUMBER;	// 224

sub_req.elements[8].event_type = SLP_SIMPLE;

sub_req.elements[9].event_name = SLP_CS_EV_OOS_DATETIME;	// 225

sub_req.elements[9].event_type = SLP_SIMPLE;

Expected Outcome:

The event mask words should be returned as follows:

								mask		mask

Word #	Event values range	Event values	Bit flags		HEX value	Decimal Value

0	1-28			0,27		1, 28		80000010	2147483664

1	29-56			30, 55		3,28		80000041	2147483713

2	57-84			56		1		00000012	18

3	85-112			none		none		00000003	3

4	113-140			124		12		00008004	32772	

5	141-168			157		17		00100005	1048581

6	169-196			none		none		00000006	6

7	197-224			none		none		00000007	7

8	225-252			225,242,226	1,2,18		00200038	2097208

9	253-280			none		none		00000009	9

Example calculation:

Word #0:

Events 0 and 27 fall within the first mask word. The bit positions refer to the bit position starting from the 5th bit from the right in a 32 bit binary word. The right most four bits are used to represent the index of the word number (0 for word 0 , 1 for word 1, etc.).

So event 0 would be the first bit in the set of usable (left most 28) bits. Word one with just event 0 would be : 0x00000010 (event) + 0x00000000 (word index) = 0x00000010. When you also include event 28 it is: 0x800000000 (event 28) + 0x00000010 (event 0) + 0x00000000 (word index) = 80000010. The decimal representation is 2147483664.

Test Procedure Steps:

Set breakpoint in slp_create at the first call to calculate_event_mask.

Select “Test->Go” from MS Developer menu.

When trap occurs, step over calculate_event_mask

Verify that returned mask words match expected results.

Analysis Procedures:

If returned mask word values match expected results then function has executed successfully.

�Unit Test Report

					

Unit ID: calculate_event_mask

UTP ID: CALCULATE_EVENT_MASK01

Version Control ID: 142dev version 2: slp_mask_utils.cpp	Test Seq Number: 	01

Test Conductor: Curt Stapleton				Test Date: 8/20/97

Purpose of Test:

To test successful execution of calculate_event_mask.

Actual Results:

Mask Word		Decimal Value

0			2147483664

1			2147483713

2			18

3			3

4			32772	

5			1048581

6			6

7			7

8			2097208

9			9

__X___	PASS	_____	FAIL

(Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

Date: 8/27/97			

Unit ID: clear_mask		

UTP ID: CLEAR_MASK01

Version Control ID: 142dev version 2: slp_mask_utils.cpp

Unit Function:

This function sets all events in all mask words to TRUE

Requirement to be validated:

?

Test Tools, Drivers, or Special Conditions:

The function may be tested by calling it with a pointer to a SLP_event_mask_t struct and verifying that all event bits are set to false and that the word number is represented by the 4 lowest order bits in the struct pointed to after execution.

Input Data:

event mask memory location

Expected Outcome:

event mask

word#	value

0	0

1	1

2	2

3	3

4	4

5	5

6	6

7	7

8	8

9	9

Test Procedure Steps:

Set breakpoint in test_slp at the first call to fill_mask.

Select “Test->Go” from MS Developer menu.

When trap occurs, modify input parameters to match input data above.

Step over base_to_the_power and examine result.

Analysis Procedures:

If results match the “expected outcome” above, then function executed successfully

�Unit Test Report

					

Unit ID: clear_mask		

UTP ID: CLEAR_MASK01

Version Control ID: 142dev version 2: slp_mask_utils.cpp 	Test Seq Number: 	01

Test Conductor: Curt Stapleton				Test Date: 8/27/97

Purpose of Test:

To test successful execution of clear_mask.

Actual Results:

word#	value

0	0

1	1

2	2

3	3

4	4

5	5

6	6

7	7

8	8

9	9

___X__	PASS	_____	FAIL

(Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

Date: 8/25/97			

Unit ID: slp_create

UTP ID: SLP_CREATE01

Version Control ID: 142dev version

Unit Function:

This function is responsible for receiving subscription requests, validating those requests, and modifying the database according to the request. Possible actions are: Adding a new subscription to the database, updating an existing subscription in the database, sending a status report describing a subscription in the database, sending baseline info to the user, and appending a query item to an existing subscription in the database.

 Requirement to be validated:

3.1.4.1 - Create new subscription - No baseline info

Test Tools, Drivers, or Special Conditions:

The function may be tested by calling test_slp_create, modifying the input parameters, and using the microsoft developer studio to halt execution at the call to slp_create, and then step through the function to verify correctness.

Input Data:

packet_header.type = SAF_TRANS_UPDATE

packet_header.process_id = 0;

packet_header.reply_address = “SAICCurt”

packet_header.sender_org = “SAIC”

packet_header.sender_account = “SAICCurt”

request_header.type = SAF_DATA_NULL

request_header.req_overnite_flag = 0

update_data .data.subscription_req.process_time_type = SLP_IMMEDIATELY

update_data .data.subscription_req.output_type = SLP_VIEW

update_data .data.subscription_req.query_number = SAFER_QUERY_DOT

update_data .data.subscription_req.user_seq = “TESTSEQ”

update_data .data.subscription_req.event_status_flag = FALSE;

update_data .data.subscription_req.baseline_data_flag = FALSE;

update_data.data.subscription_req.append_flag = FALSE;

update_data .data.subscription_req.query_parms[0].parm_number = SAFER_DOT_PARAM;

update_data .data.subscription_req.query_parms[0].parm_value = 220

update_data .data.subscription_req.elements[0].event_type = SLP_SIMPLE

update_data .data.subscription_req.elements[0].event_name = 1

update_data .data.subscription_req.view_name = 1

update_data .data.type = SAF_DATA_NULL

Expected Outcome:

slp_create will make the following calls - (#) = number of calls: sdb_check_for_subscription(2),sdb_get_org_subscription_id(1), insert_parm(1), calculate_event_mask(1), calculate_range_mask(1), sdb_get_available_sub_id(1), sdb_insert_new_subscription(1), sdb_add_user_to_subscription(1), sdb_insert_parms(1), sdb_commit(1), and free_parms(1).

Test Procedure Steps:

Set breakpoint in test_slp_create at first call to slp_create

Select “Test->Go” from MS Developer menu.

When trap is made, step into slp_create

Step over all function calls until function hits a return statement

Analysis Procedures:

If slp_create calls all functions listed in expected outcome, AND returns SLP_OK, then it has executed successfully.

�Unit Test Report

					

Unit ID: slp_create

UTP ID: SLP_CREATE01	

Version Control ID: 142dev version			Test Seq Number: 	01

Test Conductor: Curt Stapleton			Test Date: 8/25/97

Purpose of Test:

To test successful execution of slp_create for the “create new subscription” case (no baseline info).

Actual Results:

2 calls made to sdb_check_for_subscription

1 call made to sdb_get_org_subscription_id

1 call made to insert_parm

1 call made to calculate_event_mask

1 call made to calculate_range_mask

1 call made to sdb_get_available_sub_id

1 call made to sdb_insert_new_subscription

1 call made to sdb_add_user_to_subscription

1 call made to sdb_insert_parms

1 call made to sdb_commit

1 call made to free_parms

function returned SLP_OK

__X___	PASS	_____	FAIL

(Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

Date: 8/25/97			

Unit ID: slp_create

UTP ID: SLP_CREATE02

Version Control ID: 142dev version

Unit Function:

This function is responsible for receiving subscription requests, validating those requests, and modifying the database according to the request. Possible actions are: Adding a new subscription to the database, updating an existing subscription in the database, sending a status report describing a subscription in the database, and appending a query item to an existing subscription in the database. In the case of “create new subscription”, slp_create will decide whether or not to send baseline info to the user.

Requirement to be validated:

3.1.4.1 - 3.1.4.1 - UPDATE existing subscription - No baseline info

Test Tools, Drivers, or Special Conditions:

The function may be tested by calling test_slp_create, modifying the input parameters, and using the microsoft developer studio to halt execution at the call to slp_create, and then step through the function to verify correctness.

Input Data:

packet_header.type = SAF_TRANS_UPDATE

packet_header.process_id = 0;

packet_header.reply_address = “SAICCurt”

packet_header.sender_org = “SAIC”

packet_header.sender_account = “SAICCurt”

request_header.type = SAF_DATA_NULL

request_header.req_overnite_flag = 0

update_data .data.subscription_req.process_time_type = SLP_IMMEDIATELY

update_data .data.subscription_req.output_type = SLP_VIEW

update_data .data.subscription_req.query_number = SAFER_QUERY_DOT

update_data .data.subscription_req.user_seq = “TESTSEQ”

update_data .data.subscription_req.event_status_flag = FALSE

update_data .data.subscription_req.baseline_data_flag = FALSE

update_data .data.subscription_req.append_flag=FALSE

update_data .data.subscription_req.query_parms[0].parm_number = SAFER_DOT_PARAM

update_data .data.subscription_req.query_parms[0].parm_value = 220

update_data .data.subscription_req.elements[0].event_type = SLP_SIMPLE

update_data .data.subscription_req.elements[0].event_name = 1

update_data .data.subscription_req.view_name = 1

update_data .data.type = SAF_DATA_NULL

Expected Outcome:

slp_create will make the following calls - (#) = number of calls: sdb_check_for_subscription(1), insert_parm(1), calculate_event_mask(1), calculate_range_mask(1), sdb_delete_parms(1),

sdb_update_subscription(1), sdb_insert_parms(1), sdb_commit(1), and free_parms(1).

Test Procedure Steps:

Set breakpoint in test_slp_create at first call to slp_create

Select “Test->Go” from MS Developer menu.

When trap is made, step into slp_create

Step over all function calls until function hits a return statement

Analysis Procedures:

If slp_create calls all functions listed in expected outcome, AND returns SLP_OK, then it has executed successfully.

�Unit Test Report

					

Unit ID: slp_create

UTP ID: SLP_CREATE02	

Version Control ID: 142dev version 		Test Seq Number: 	01

Test Conductor: Curt Stapleton			Test Date: 8/25/97

Purpose of Test:

To test successful execution of slp_create for the “update existing subscription” case (no baseline info).

Actual Results:

1 call made to sdb_check_for_subscription

1 call made to insert_parm

1 call made to calculate_event_mask

1 call made to calculate_range_mask

1 call made to sdb_delete_parms

1 call made to sdb_update_subscription

1 call made to sdb_insert_parms

1 call made to sdb_commit

1 call made to free_parms

___X__	PASS	_____	FAIL

(Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

Date: 8/25/97				

Unit ID: slp_create

UTP ID: SLP_CREATE03

Version Control ID: 142dev version

Unit Function:

This function is responsible for receiving subscription requests, validating those requests, and modifying the database according to the request. Possible actions are: Adding a new subscription to the database, updating an existing subscription in the database, sending a status report describing a subscription in the database, and appending a query item to an existing subscription in the database. In the case of “create new subscription”, slp_create will decide whether or not to send baseline info to the user.

Requirement to be validated:

3.1.4.1 - Send status report

Test Tools, Drivers, or Special Conditions:

The function may be tested by calling test_slp_create, modifying the input parameters, and using the microsoft developer studio to halt execution at the call to slp_create, and then step through the function to verify correctness.

Input Data:

update_data .data.packet_header.type = SAF_TRANS_UPDATE

update_data .data.packet_header.process_id = 0;

update_data .data.packet_header.reply_address = “SAICCurt”

update_data .data.packet_header.sender_org = “SAIC”

update_data .data.packet_header.sender_account = “SAICCurt”

update_data .data.request_header.type = SAF_DATA_NULL

update_data .data.request_header.req_overnite_flag = 0

update_data .data.subscription_req.process_time_type = SLP_IMMEDIATELY

update_data .data.subscription_req.output_type = SLP_VIEW

update_data .data.subscription_req.query_number = SAFER_QUERY_DOT

update_data .data.subscription_req.user_seq = “TESTSEQ”

update_data .data.subscription_req.event_status_flag = TRUE;

update_data .data.subscription_req.baseline_data_flag = FALSE;

update_data .data.subscription_req.query_parms[0].parm_number = SAFER_DOT_PARAM;

update_data .data.subscription_req.query_parms[0].parm_value = 220

update_data .data.subscription_req.elements[0].event_type = SLP_SIMPLE

update_data .data.subscription_req.elements[0].event_name = 1

update_data .data.subscription_req.view_name = 1

update_data .data.type = SAF_DATA_NULL

Expected Outcome:

slp_create will make the following calls - (#) = number of calls: sdb_check_for_subscription(1), slp_status(1)

Test Procedure Steps:

Set breakpoint in test_slp_create at first call to slp_create

Select “Test->Go” from MS Developer menu.

When trap is made, step into slp_create

Step over all function calls until function hits a return statement

Analysis Procedures:

If slp_create calls all functions listed in expected outcome, AND returns SLP_OK, then it has executed successfully.

�Unit Test Report

					

Unit ID: slp_create

UTP ID: SLP_CREATE03	

Version Control ID: 142dev version			Test Seq Number: 	01

Test Conductor: Curt Stapleton			Test Date: 8/25/97

Purpose of Test:

To test successful execution of slp_create for the “Send status report” case

Actual Results:

1 call made to sdb_check_for_subscription

1 call made to slp_status

Returned SLP_OK

__X___	PASS	_____	FAIL

(Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

Date: 8/25/97			

Unit ID: slp_create

UTP ID: SLP_CREATE04

Version Control ID: 142dev version

Unit Function:

This function is responsible for receiving subscription requests, validating those requests, and modifying the database according to the request. Possible actions are: Adding a new subscription to the database, updating an existing subscription in the database, sending a status report describing a subscription in the database, and appending a query item to an existing subscription in the database. In the case of “create new subscription”, slp_create will decide whether or not to send baseline info to the user.

Requirement to be validated:

3.1.4.1 - Send baseline info

Test Tools, Drivers, or Special Conditions:

The function may be tested by calling test_slp_create, modifying the input parameters, and using the microsoft developer studio to halt execution at the call to slp_create, and then step through the function to verify correctness.

Input Data:

update_data .data.packet_header.type = SAF_TRANS_UPDATE

update_data .data.packet_header.process_id = 0;

update_data .data.packet_header.reply_address = “SAICCurt”

update_data .data.packet_header.sender_org = “SAIC”

update_data .data.packet_header.sender_account = “SAICCurt”

update_data .data.request_header.type = SAF_DATA_NULL

update_data .data.request_header.req_overnite_flag = 0

update_data .data.subscription_req.process_time_type = SLP_IMMEDIATELY

update_data .data.subscription_req.output_type = SLP_VIEW

update_data .data.subscription_req.query_number = SAFER_QUERY_DOT

update_data .data.subscription_req.user_seq = “TESTSEQ”

update_data .data.subscription_req.event_status_flag = FALSE

update_data .data.subscription_req.baseline_data_flag = TRUE

update_data .data.subscription_req.query_parms[0].parm_number = SAFER_DOT_PARAM;

update_data .data.subscription_req.query_parms[0].parm_value = 220

update_data .data.subscription_req.elements[0].event_type = SLP_SIMPLE

update_data .data.subscription_req.elements[0].event_name = 1

update_data .data.subscription_req.view_name = 1

update_data .data.type = SAF_DATA_NULL

Expected Outcome:

slp_create will make the following calls - (#) = number of calls: sdb_check_for_subscription(1), insert_parm(1), calculate_event_mask(1), calculate_range_mask(1), sdb_delete_parms(1),

sdb_update_subscription(1), sdb_insert_parms(1), sdb_commit(1), slp_formreq(1) and free_parms(1).

Test Procedure Steps:

Set breakpoint in test_slp_create at first call to slp_create

Select “Test->Go” from MS Developer menu.

When trap is made, step into slp_create

Step over all function calls until funtion hits a return statement

Analysis Procedures:

If slp_create calls all functions listed in expected outcome, AND returns SLP_OK, then it has executed successfully.

�Unit Test Report

					

Unit ID: slp_create

UTP ID: SLP_CREATE04	

Version Control ID: 142dev version			Test Seq Number: 	01

Test Conductor: Curt Stapleton			Test Date: 8/25/97

Purpose of Test:

To test successful execution of slp_create for the “send baseline info” case.

Actual Results:

1 call made to sdb_check_for_subscription

1 call made to insert_parm

1 call made to calculate_event_mask

1 call made to calculate_range_mask

1 call made to sdb_delete_parms

1 call made to sdb_update_subscription

1 call made to sdb_insert_parms

1 call made to sdb_commit

1 call made to slp_formreq

1 call made to free_parms

Returned SLP_OK

___X__	PASS	_____	FAIL

(Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

Date: 6/10/97				

Unit ID: slp_create

UTP ID: SLP_CREATE05

Version Control ID: 142dev version

Unit Function:

This function is responsible for receiving subscription requests, validating those requests, and modifying the database according to the request. Possible actions are: Adding a new subscription to the database, updating an existing subscription in the database, sending a status report describing a subscription in the database, and appending a query item to an existing subscription in the database. In the case of “create new subscription”, slp_create will decide whether or not to send baseline info to the user.

Requirement to be validated:

3.1.4.1 - Append query to existing subscription

Test Tools, Drivers, or Special Conditions:

The function may be tested by calling test_slp_create, modifying the input parameters, and using the microsoft developer studio to halt execution at the call to slp_create, and then step through the function to verify correctness.

Input Data:

update_data .data.packet_header.type = SAF_TRANS_UPDATE

update_data .data.packet_header.process_id = 0;

update_data .data.packet_header.reply_address = “SAICCurt”

update_data .data.packet_header.sender_org = “SAIC”

update_data .data.packet_header.sender_account = “SAICCurt”

update_data .data.request_header.type = SAF_DATA_NULL

update_data .data.request_header.req_overnite_flag = 0

update_data .data.subscription_req.process_time_type = SLP_IMMEDIATELY

update_data .data.subscription_req.output_type = SLP_VIEW

update_data .data.subscription_req.query_number = SAFER_QUERY_DOT

update_data .data.subscription_req.user_seq = “TESTSEQ”

update_data .data.subscription_req.event_status_flag = FALSE

update_data .data.subscription_req.baseline_data_flag = FALSE;

update_data.data.subscription_req.append_flag = TRUE

update_data .data.subscription_req.query_parms[0].parm_number = SAFER_DOT_PARAM;

update_data .data.subscription_req.query_parms[0].parm_value = 654123

update_data .data.subscription_req.elements[0].event_type = SLP_SIMPLE

update_data .data.subscription_req.elements[0].event_name = 1

update_data .data.subscription_req.view_name = 1

update_data .data.type = SAF_DATA_NULL

Expected Outcome:

slp_create will make the following calls - (#) = number of calls: sdb_check_for_subscription(1), insert_parm(1), slp_append_query(1)

Test Procedure Steps:

Set breakpoint in test_slp_create at first call to slp_create

Select “Test->Go” from MS Developer menu.

When trap is made, step into slp_create

Step over all function calls until funtion hits a return statement

Analysis Procedures:

If slp_create calls all functions listed in expected outcome, AND returns SLP_OK, then it has executed successfully.

�Unit Test Report

					

Unit ID: slp_create

UTP ID: SLP_CREATE05	

Version Control ID: 142dev version			Test Seq Number: 	01

Test Conductor: Curt Stapleton				Test Date: 8/25/97

Purpose of Test:

To test successful execution of slp_create for the “append query to existing subscription” case.

Actual Results:

1 call made to sdb_check_for_subscription

1 call made to insert_parm

1 call made to slp_append_query

Continued through function and performed an update - Should have returned

_____	PASS	__X___	FAIL

(Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

Unit Test Plan

Date: 8/27/97			

Unit ID: fill_mask		

UTP ID: FILL_MASK01

Version Control ID: 142dev version 2: slp_mask_utils.cpp

Unit Function:

This function sets all events in all mask words to TRUE

Requirement to be validated:

?

Test Tools, Drivers, or Special Conditions:

The function may be tested by calling the function with a pointer to a SLP_event_mask_t struct and verifying that all event bits are set to true in the struct pointed to after execution.

Input Data:

event mask

word #	value

0 	0

1	1

2	2

3	3

4	4

5	5

6	6

7	7

8	8

9	9

Expected Outcome:

event mask

word#	value

0	4294967280

1	4294967281

2	4294967282

3	4294967283

4	4294967284

5	4294967285

6	4294967286

7	4294967287

8	4294967288

9	4294967289

Test Procedure Steps:

Set breakpoint in test_slp at the first call to fill_mask.

Select “Test->Go” from MS Developer menu.

When trap occurs, modify input parameters to match input data above.

Step over base_to_the_power and examine result.

Analysis Procedures:

If results match the “expected outcome” above, then function executed successfully

�Unit Test Report

					

Unit ID: fill_mask		

UTP ID: FILL_MASK01

Version Control ID: 142dev version 2: slp_mask_utils.cpp 	Test Seq Number: 	01

Test Conductor: Curt Stapleton				Test Date: 8/27/97

Purpose of Test:

To test successful execution of fill_mask.

Actual Results:

word#	value

0	4294967280

1	4294967281

2	4294967282

3	4294967283

4	4294967284

5	4294967285

6	4294967286

7	4294967287

8	4294967288

9	4294967289

___X__	PASS	_____	FAIL

(Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: sdb_get_available_sub_id

UTP ID: SDB_GET_AVAILABLE_SUB_ID01

Version Control ID: SAIC V01-B01	

Unit Function:

This function reads through the subscription table in the database and returns the highest existing sub_id + 1

Requirement to be validated:

3.1.4.1

Test Tools, Drivers, or Special Conditions:

Input Data:

none

Expected Outcome:

The next available subscription_id

Test Procedure Steps:

Query the database for the highest sub_id (select subscription_id from subscription)

Call function and check answer against a manual sql query

Analysis Procedures:

�Unit Test Report

					

Unit ID: sdb_get_available_sub_id

UTP ID: SDB_GET_AVAILABLE_SUB_ID01	

Version Control ID: SAIC V01-B01			Test Seq Number: 	01

Test Conductor: Curt Stapleton				Test Date: 8/6/96

Purpose of Test:

To verify that the function executes as planned.

Actual Results:

Manual query showed 6 to be the highest sub_id

function returned 7 (ok)

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

Date: 8/27/97			

Unit ID: get_local_time	

UTP ID: GET_LOCAL_TIME01

Version Control ID: 142dev version 2: slp_date_utils.cpp

Unit Function:

This function reads the system time and date and returns it in the form of an integer of the format YYYYMMDDHH

Requirement to be validated:

?

Test Tools, Drivers, or Special Conditions:

The function may be tested by calling the test function get_local_time, and using the microsoft developer studio to step over the function and examining the return value.

Input Data:

none

Expected Outcome:

the system time and date should be returned as an integer in the form YYYYMMDDHH

Test Procedure Steps:

Set breakpoint in test_slp at the first call to get_local_time.

Select “Test->Go” from MS Developer menu.

Step over get_local_time and examine return value.

Analysis Procedures:

If return value matches the system time and date and is an integer in the form YYYYMMDDHH then the function has executed successfully.

�Unit Test Report

					

Unit ID: get_local_time

UTP ID: GET_LOCAL_TIME01

Version Control ID: 142dev version 2: slp_date_utils.cpp	Test Seq Number: 	01

Test Conductor: Curt Stapleton				Test Date: 8/27/97

Purpose of Test:

To test successful execution of get_local_time.

Actual Results:

function returned the correct system time and date as an integer in the format YYYYMMDDHH

___X__	PASS	_____	FAIL

(Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: sdb_get_subscription

UTP ID: SDB_GET_SUBSCRIPTION

Version Control ID: SAIC V01-B01	

Unit Function:

This function selects a subscription record from the database given an integer value. It then puts that subscription record into a C data structure and returns that structure.

Requirement to be validated:

Test Tools, Drivers, or Special Conditions:

Input Data:

An integer value

Expected Outcome:

A C data structure for a subscription with id =input found in the database

Test Procedure Steps:

Call function with existing subscription id

Call function with negative subscription id

Call function with 0 subscription id

Call function with non-existent positive subscription id

Analysis Procedures:

�Unit Test Report

					

Unit ID: sdb_get_subscription

UTP ID: SDB_GET_SUBSCRIPTION	

Version Control ID: SAIC V01-B01			Test Seq Number: 	01

Test Conductor: Curt Stapleton			Test Date: 8/5/96

Purpose of Test:

The verify that the function executes as expected given valid and invalid input.

Actual Results:

Returned correct subscription

Returned subscription with id = 0 (correct action)

Returned subscription with id = 0 (correct action)

Returned subscription with id = 0 (correct action)

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: sdb_get_sub_id_list

UTP ID: SDB_GET_SUB_ID_LIST01

Version Control ID: SAIC V01-B01	

Unit Function:

This function reads all subscription ids found in the subscription table and returns a linked list of those ids.

Requirement to be validated:

3.1.4.2

Test Tools, Drivers, or Special Conditions:

Input Data:

none

Expected Outcome:

Correct list of subscription ids

Test Procedure Steps:

Use sqlplus to select list of subscription ids (select subscription_id from subscription)

Compare sql list to the list created and returned by sdb_get_sub_id_list

Analysis Procedures:

�Unit Test Report

					

Unit ID: sdb_get_sub_id_list

UTP ID: SDB_GET_SUB_ID_LIST01	

Version Control ID: SAIC V01-B01			Test Seq Number: 	01

Test Conductor: Curt Stapleton			Test Date: 8/5/96

Purpose of Test:

To verify that the list of ids returned matches the list produced by a sql select command

Actual Results:

function returns the correct list

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: sdb_insert_new_subscription

UTP ID: SDB_INSERT_NEW_SUBSCRIPTION01

Version Control ID: SAIC V01-B01	

Unit Function:

This function adds a new subscription to the subscription database table and returns SLP_OK upon success.

Requirement to be validated:

3.1.4.1

Test Tools, Drivers, or Special Conditions:

Input Data:

a new subscription (C data structure)

Expected Outcome:

an enumerated value indicating success or failure

Test Procedure Steps:

Call function with a subscription

Analysis Procedures:

�Unit Test Report

					

Unit ID: sdb_insert_new_subscription

UTP ID: SDB_INSERT_NEW_SUBSCRIPTION01	

Version Control ID: SAIC V01-B01			Test Seq Number: 	01

Test Conductor: Curt Stapleton			Test Date: 8/6/96

Purpose of Test:

To verify that the function executes as planned

Actual Results:

The function inserted the subscription as planned.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

Date: 8/28/97			

Unit ID: insert_parm	

UTP ID: INSERT_PARM01

Version Control ID: 142dev version 2: slp_linked_list_utils.cpp

Unit Function:

This function creates and adds nodes to a linked list of SLP_parm_no_value_pair_t t

Requirement to be validated:

? - CASE: NULL list pointer to begin with

Test Tools, Drivers, or Special Conditions:

The function may be tested by calling the function with a pointer to a SLP_linked_query_parms_list_t struct, and a SLP_parm_no_value_pair_t struct and verifying that a list is created or added to correctly.

Input Data:

query_parm.parm_number = SAFER_DOT_PARAM

query_parm.parm_value = “654123”

parms_list_ptr = NULL;

Expected Outcome:

*parms_list_ptr =

	parms_list = 	query_parm.parm_number = SAFER_DOT_PARAM

			query_parm.parm_value = “654123”

			next = NULL

	

Test Procedure Steps:

Set breakpoint in test_slp at the first call to insert_parm

Select “Test->Go” from MS Developer menu.

When trap occurs, modify input parameters to match input data above.

Step over insert_parm and examine result.

Analysis Procedures:

If results match the “expected outcome” above, then function executed successfully

�Unit Test Report

					

Unit ID: insert_parm		

UTP ID: INSERT_PARM01

Version Control ID: 142dev version 2: slp_linked_list_utils.cpp 	Test Seq Number: 01

Test Conductor: Curt Stapleton					Test Date: 8/28/97

Purpose of Test:

To test successful execution of insert_parm.

Actual Results:

parms_list_ptr = 	parm_number : 	SAFER_DOT_PARAM

		parm_value:	“654321”

		next		0

___X__	PASS	_____	FAIL

(Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

Date: 8/28/97			

Unit ID: insert_parm	

UTP ID: INSERT_PARM02

Version Control ID: 142dev version 2: slp_linked_list_utils.cpp

Unit Function:

This function creates and adds nodes to a linked list of SLP_parm_no_value_pair_t

Requirement to be validated:

? - CASE: existing list pointer to begin with

Test Tools, Drivers, or Special Conditions:

The function may be tested by calling the function with a pointer to a SLP_linked_query_parms_list_t struct, and a SLP_parm_no_value_pair_t struct and verifying that a list is created or added to correctly.

Input Data:

First call:

	parms_list_ptr = NULL;

query_parm.parm_number = SAFER_DOT_PARAM

query_parm.parm_value = “654123”

Second call:

	parms_list_ptr = 	parm.parm_number: 	SAFER_DOT_PARAM

			parm.parm_value:	“654321”

			next:			NULL

	query_parm.parm_number = SAFER_STATE_PARAM

	query_parm.parm_value = “12345”

	

Expected Outcome:

*parms_list_ptr =

	parms_list = 	parm.parm_number = SAFER_DOT_PARAM

			parm.parm_value = “654123”

			next = <some value>

			parm.parm_number:	SAFER_STATE_PARAM

			parm.parm_value:	“12345”

			next:			NULL

	

Test Procedure Steps:

Set breakpoint in test_slp at the first call to insert_parm

Select “Test->Go” from MS Developer menu.

When trap occurs, modify input parameters to match input data above.

Step over insert_parm

When trap occurs, modify input parameters to match input data above.

Step over insert_parm and examine result.

Analysis Procedures:

If results match the “expected outcome” above, then function executed successfully

�Unit Test Report

					

Unit ID: insert_parm		

UTP ID: INSERT_PARM02

Version Control ID: 142dev version 2: slp_linked_list_utils.cpp 	Test Seq Number: 01

Test Conductor: Curt Stapleton					Test Date: 8/28/97

Purpose of Test:

To test successful execution of insert_parm.

Actual Results:

parms_list_ptr = 	parm.parm_number : 	SAFER_DOT_PARAM

		parm.parm_value:	“654321”

		next:			0x010f0ad0

		parm.parm_number	SAFER_STATE_PARM

		parm.parm_value		“12345”

		next:			0

___X__	PASS	_____	FAIL

(Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

Date: 8/28/97			

Unit ID: insert_pending_entry	

UTP ID: INSERT_PENDING_ENTRY01

Version Control ID: 142dev version 2: slp_linked_list_utils.cpp

Unit Function:

This function creates and adds nodes to a linked list of SLP_pending_entry_t

Requirement to be validated:

? - CASE: NULL list pointer to begin with

Test Tools, Drivers, or Special Conditions:

The function may be tested by calling the function with a pointer to a SLP_linked_pending_entry_list_t struct, and a subscription_id, SLP_date_t, SLP_carrier_id and verifying that a list is created or added to correctly.

Input Data:

pending_entry.subscription_id = 1

pending_entry.date = 1997082817

pending_entry.carrier_id = 654321

pending_entry_list_ptr = NULL;

Expected Outcome:

pending_entry_list_ptr =

			subscription_id:	1

date:		1997082817

carrier_id:	654321

next:		NULL

	

Test Procedure Steps:

Set breakpoint in test_slp at the first call to insert_pending_entry

Select “Test->Go” from MS Developer menu.

When trap occurs, modify input parameters to match input data above.

Step over insert_pending_entry and examine result.

Analysis Procedures:

If results match the “expected outcome” above, then function executed successfully

�Unit Test Report

					

Unit ID: insert_pending_entry		

UTP ID: INSERT_PENDING_ENTRY01

Version Control ID: 142dev version 2: slp_linked_list_utils.cpp 	Test Seq Number: 01

Test Conductor: Curt Stapleton					Test Date: 8/28/97

Purpose of Test:

To test successful execution of insert_pending_entry.

Actual Results:

pending_entry_list_ptr =

			subscription_id:	1

date:		1997082817

carrier_id:	654321

next:		NULL

___X__	PASS	_____	FAIL

(Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

Date: 8/28/97			

Unit ID: insert_pending_entry	

UTP ID: INSERT_PENDING_ENTRY02

Version Control ID: 142dev version 2: slp_linked_list_utils.cpp

Unit Function:

This function creates and adds nodes to a linked list of insert_pending_entry

Requirement to be validated:

? - CASE: existing list pointer to begin with

Test Tools, Drivers, or Special Conditions:

The function may be tested by calling the function with a pointer to a SLP_linked_pending_entry_list_t struct, and a subscription_id, SLP_date_t, SLP_carrier_id and verifying that a list is created or added to correctly.

Input Data:

first call:

	pending_entry_list_ptr = NULL;

pending_entry.subscription_id = 1

pending_entry.date = 1997082817

pending_entry.carrier_id = 654321

second call:

pending_entry.subscription_id = 6

pending_entry.date = 1995082801

pending_entry.carrier_id = 12345

Expected Outcome:

pending_entry_list_ptr =

			subscription_id :		1

date:			1997082817

carrier_id:		654321

next:			some value

subscription_id:		6

date:			1995082801

carrier_id:		12345

next:			NULL

Test Procedure Steps:

Set breakpoint in test_slp at the first call to insert_pending_entry

Select “Test->Go” from MS Developer menu.

When trap occurs, modify input parameters to match input data above.

Step over insert_pending_entry

When trap occurs, modify input parameters to match input data above.

Step over insert_pending_entry and examine result.

Analysis Procedures:

If results match the “expected outcome” above, then function executed successfully

�Unit Test Report

					

Unit ID: insert_pending_entry		

UTP ID: INSERT_PENDING_ENTRY02

Version Control ID: 142dev version 2: slp_linked_list_utils.cpp 	Test Seq Number: 01

Test Conductor: Curt Stapleton					Test Date: 8/28/97

Purpose of Test:

To test successful execution of insert_pending_entry.

Actual Results:

pending_entry_list_ptr =

			subscription_id:	1

date:		1997082817

carrier_id:	654321

next:		0x010f0ac0

subscription_id:	6

date:		1995082801

carrier_id:	12345

next:		0

___X__	PASS	_____	FAIL

(Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: slp_create

UTP ID: SLP_CREATE01

Version Control ID: SAIC V01-B01	

Unit Function:

This function is responsible for receiving subscription requests, validating those requests, adding the subscription to the database and sending baseline information if necessary.

Requirement to be validated:

3.1.4.1

Test Tools, Drivers, or Special Conditions:

Input Data:

packet header

request header

update header

Expected Outcome:

a BOOLEAN value reflecting the status of all operations performed, and functions called.

Test Procedure Steps:

Test event_status ON branch

Test event_staus OFF branch

Call with valid view name in request (branch #3)

Call with invalid view name in request

Test with returned subscription_id = 0

Test with returned subscription_id != 0

Test with baseline_data_flag ON

Test with baseline_data_flag OFF

Analysis Procedures:

�Unit Test Report

					

Unit ID: slp_create

UTP ID: SLP_CREATE01	

Version Control ID: SAIC V01-B01			Test Seq Number: 	01

Test Conductor: Curt Stapleton			Test Date: 8/5/96

Purpose of Test:

To test all branches and possible conditions and verify that function executes as planned.

Actual Results:

Event status flag OFF branch is ok

Event status flag ON branch is ok.

Invalid view name branch is ok

Valid view name branch is ok

subscription_id =0 branch is ok

subscription_id != 0 branch is ok.

baseline_data_flaog ON is ok

baseline_data_flag OFF branch is ok

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: sdb_slp_get_view

UTP ID: SDB_SLP_GET_VIEW01

Version Control ID: SAIC V01-B01	

Unit Function:

This function retrieves a view record from the database and returns a data structure containing that view information.

Requirement to be validated:

3.1.4.1

Test Tools, Drivers, or Special Conditions:

Input Data:

a view name

Expected Outcome:

A structure containing view data from the database

Test Procedure Steps:

Call with existing view name (existing = in the db)

Call with a non-existent view name

Analysis Procedures:

�Unit Test Report

					

Unit ID: sdb_slp_get_view

UTP ID: SDB_SLP_GET_VIEW01	

Version Control ID: SAIC V01-B01			Test Seq Number: 	01

Test Conductor: Curt Stapleton				Test Date: 8/6/96

Purpose of Test:

To verify that the function executes as planned.

Actual Results:

Valid view name works ok

Invalid view name returns null view (ok)

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

Date: 8/27/97				

Unit ID: slp_listmov

UTP ID: SLP_LISTMOV01

Version Control ID: 142dev version 2

Unit Function:

This function receives an integer and calls a DB function to retrieve the subscription identified by the integer input. The subscription is returned.

Requirement to be validated:

Test for return of existing subscription

Test Tools, Drivers, or Special Conditions:

The function may be tested by calling slp_listmov, modifying the input parameters, and using the microsoft developer studio to halt execution at the call to slp_listmov, and then step through the function to verify correctness. A subscription with the ID = input data must exist in the database.

Input Data:

subscription_id = 2

Expected Outcome:

slp_listmov will call sdb_get_subscription and pass it the value listed in Input data and return a subscription_t struct.

Test Procedure Steps:

Set breakpoint in test_slp at first call to slp_listmov

Select “Test->Go” from MS Developer menu.

When trap is made, step into slp_listmov

Step over all function calls until funtion hits a return statement

Analysis Procedures:

If slp_listmov returns a subscription_t struct after calling all functions listed in expected outcome, then it has executed successfully.

�Unit Test Report

					

Unit ID: slp_listmov

UTP ID: SLP_LISTMOV01

Version Control ID: 142dev version 2			Test Seq Number: 	01

Test Conductor: Curt Stapleton				Test Date: 8/27/97

Purpose of Test:

To test successful execution of slp_listmov.

Actual Results:

function returned an SLP_subscription_t struct containing data found in database with subscrption_id equal to input parameter.

___X__	PASS	_____	FAIL

(Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

Date: 8/27/97				

Unit ID: slp_listmov

UTP ID: SLP_LISTMOV02

Version Control ID: 142dev version 2

Unit Function:

This function receives an integer and calls a DB function to retrieve the subscription identified by the integer input. The subscription is returned.

Requirement to be validated:

Test for return of existing subscription SUBSCRIPTION NOT FOUND CASE

Test Tools, Drivers, or Special Conditions:

The function may be tested by calling slp_listmov, modifying the input parameters, and using the microsoft developer studio to halt execution at the call to slp_listmov, and then step through the function to verify correctness. A subscription with the ID = input data must NOT exist in the database.

Input Data:

subscription_id = 99

Expected Outcome:

slp_listmov will call sdb_get_subscription and pass it the value listed in Input data and return a subscription_t struct with a subscription_id = 0

Test Procedure Steps:

Set breakpoint in test_slp at first call to slp_listmov

Select “Test->Go” from MS Developer menu.

When trap is made, step into slp_listmov

Step over all function calls until funtion hits a return statement

Analysis Procedures:

If slp_listmov returns a subscription_t struct after calling all functions listed in expected outcome, then it has executed successfully.

�Unit Test Report

					

Unit ID: slp_listmov

UTP ID: SLP_LISTMOV02

Version Control ID: 142dev version 2			Test Seq Number: 	01

Test Conductor: Curt Stapleton				Test Date: 8/27/97

Purpose of Test:

To test successful execution of slp_listmov.

Actual Results:

function returned an SLP_subscription_t struct containing data found in database with subscrption_id equal to 0

___X__	PASS	_____	FAIL

(Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: slp_listmov

UTP ID: SLP_LISTMOV01

Version Control ID: SAIC V01-B01	

Unit Function:

This function receives an integer and calls a DB function to retrieve the subscription identified by the integer input. The subscription is returned.

Requirement to be validated:

Test Tools, Drivers, or Special Conditions:

Input Data:

integer representing subscription id

Expected Outcome:

The subscription with id = input integer

Test Procedure Steps:

Call function with existing subscription id

Call function with negative subscription id

Call function with 0 subscription id

Call function with non-existent positive subscription id

Analysis Procedures:

�Unit Test Report

					

Unit ID: slp_listmov

UTP ID: SLP_LISTMOV01

Version Control ID: SAIC V01-B01			Test Seq Number: 	01

Test Conductor: Curt Stapleton			Test Date: 8/5/96

Purpose of Test:

The verify that the function executes as expected given valid and invalid input.

Actual Results:

Returned correct subscription

Returned subscription with id = 0 (correct action)

Returned subscription with id = 0 (correct action)

Returned subscription with id = 0 (correct action)

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

Date: 8/20/97			

Unit ID: matching_subscription_event		

UTP ID: MATCHING_SUBSCRIPTION_EVENT01

Version Control ID: 142dev version 2: slp_mask_utils.cpp

Unit Function:

This function compares a subscription mask and a snapshot mask and determines whether or not a subscriber is interested in the snapshot associated with the snapshot mask.

Requirement to be validated:

?

Test Tools, Drivers, or Special Conditions:

The function may be tested by calling the test functions SLP_build_mask and matching_subscription_event from within test_slp.cpp, and using the microsoft developer studio to halt execution at the call to matching_subscription_event, modifying the event masks, and stepping through the function to verify correctness.

Input Data:

Snapshot Mask

Mask Word		Decimal Value

0			2147483664

1			2147483713

2			18

3			3

4			32772	

5			1048581

6			6

7			7

8			2097208

9			9

Subscription Mask

Mask Word		Decimal Value

0			2147483664

1			2147483713

2			18

3			3

4			32772	

5			1048581

6			6

7			7

8			2097208

9			9

Expected Outcome:

matching_suscription_event should return TRUE

						

Test Procedure Steps:

Call SLP_build_mask(subscription_mask)

Call SLP_build_mask(snapshot_mask)

Verify that snapshot_mask and subscription_mask are identical

Call matching_subscription_event(snapshot_mask, subscription_mask)

Verify that returned value is TRUE.

Analysis Procedures:

If returned value = TRUE, then function has executed successfully.

�Unit Test Plan

Date: 8/20/97			

Unit ID: matching_subscription_event		

UTP ID: MATCHING_SUBSCRIPTION_EVENT02

Version Control ID: 142dev version 2: slp_mask_utils.cpp

Unit Function:

This function compares a subscription mask and a snapshot mask and determines whether or not a subscriber is interested in the snapshot associated with the snapshot mask. CASE: TRUE

Requirement to be validated:

?

Test Tools, Drivers, or Special Conditions:

The function may be tested by calling the test functions SLP_build_mask and matching_subscription_event from within test_slp.cpp, and using the microsoft developer studio to halt execution at the call to matching_subscription_event, modifying the event masks, and stepping through the function to verify correctness.

Input Data:

Snapshot Mask

Mask Word		Decimal Value

0			0

1			1

2			2

3			3

4			4	

5			5

6			6

7			7

8			2097208

9			9

Subscription Mask

Mask Word		Decimal Value

0			2147483664

1			2147483713

2			18

3			3

4			32772	

5			1048581

6			6

7			7

8			2097208

9			9

Expected Outcome:

matching_suscription_event should return TRUE

						

Test Procedure Steps:

Call SLP_build_mask(subscription_mask)

Call SLP_build_mask(snapshot_mask)

Verify that snapshot_mask and subscription_mask are identical

Call matching_subscription_event(snapshot_mask, subscription_mask)

Verify that returned value is TRUE.

Analysis Procedures:

If returned value = TRUE, then function has executed successfully.

�Unit Test Plan

Date: 8/20/97			

Unit ID: matching_subscription_event		

UTP ID: MATCHING_SUBSCRIPTION_EVENT03

Version Control ID: 142dev version 2: slp_mask_utils.cpp

Unit Function:

This function compares a subscription mask and a snapshot mask and determines whether or not a subscriber is interested in the snapshot associated with the snapshot mask. CASE: TRUE - No subscription events defined

Requirement to be validated:

?

Test Tools, Drivers, or Special Conditions:

The function may be tested by calling the test functions SLP_build_mask and matching_subscription_event from within test_slp.cpp, and using the microsoft developer studio to halt execution at the call to matching_subscription_event, modifying the event masks, and stepping through the function to verify correctness.

Input Data:

Snapshot Mask

Mask Word		Decimal Value

0			2147483664

1			2147483713

2			18

3			3

4			32772	

5			1048581

6			6

7			7

8			2097208

9			9

Subscription Mask

Mask Word		Decimal Value

0			0

1			1

2			2

3			3

4			4	

5			5

6			6

7			7

8			8

9			9

Expected Outcome:

matching_suscription_event should return TRUE

						

Test Procedure Steps:

Call SLP_build_mask(subscription_mask)

Call SLP_build_mask(snapshot_mask)

Verify that snapshot_mask and subscription_mask are identical

Call matching_subscription_event(snapshot_mask, subscription_mask)

Verify that returned value is TRUE.

Analysis Procedures:

If returned value = TRUE, then function has executed successfully.�Unit Test Plan

Date: 8/20/97			

Unit ID: matching_subscription_event		

UTP ID: MATCHING_SUBSCRIPTION_EVENT04

Version Control ID: 142dev version 2: slp_mask_utils.cpp

Unit Function:

This function compares a subscription mask and a snapshot mask and determines whether or not a subscriber is interested in the snapshot associated with the snapshot mask. CASE: FALSE

Requirement to be validated:

?

Test Tools, Drivers, or Special Conditions:

The function may be tested by calling the test functions SLP_build_mask and matching_subscription_event from within test_slp.cpp, and using the microsoft developer studio to halt execution at the call to matching_subscription_event, modifying the event masks, and stepping through the function to verify correctness.

Input Data:

Snapshot Mask

Mask Word		Decimal Value

0			2147483664

1			2147483713

2			18

3			3

4			32772	

5			1048581

6			6

7			7

8			2097208

9			9

Subscription Mask

Mask Word		Decimal Value

0			0

1			1

2			2

3			3

4			4	

5			2147483664

6			6

7			7

8			8

9			9

Expected Outcome:

matching_suscription_event should return TRUE

						

Test Procedure Steps:

Call SLP_build_mask(subscription_mask)

Call SLP_build_mask(snapshot_mask)

Verify that snapshot_mask and subscription_mask match the “input data” section above.

Call matching_subscription_event(snapshot_mask, subscription_mask)

Verify that returned value is FALSE.

Analysis Procedures:

If returned value = FALSE, then function has executed successfully.

�Unit Test Report

					

Unit ID: matching_subscription_event

UTP ID: MATCHING_SUBSCRIPTION_EVENT01

Version Control ID: 142dev version 2: slp_mask_utils.cpp	Test Seq Number: 	01

Test Conductor: Curt Stapleton				Test Date: 8/20/97

Purpose of Test:

To test successful execution of matching_subscription_event for the TRUE case.

Actual Results:

function returned TRUE

___X__	PASS	_____	FAIL

(Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Report

					

Unit ID: matching_subscription_event

UTP ID: MATCHING_SUBSCRIPTION_EVENT02

Version Control ID: 142dev version 2: slp_mask_utils.cpp	Test Seq Number: 	01

Test Conductor: Curt Stapleton				Test Date: 8/20/97

Purpose of Test:

To test successful execution of matching_subscription_event for the TRUE case.

Actual Results:

function returned TRUE

__X___	PASS	_____	FAIL

(Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Report

					

Unit ID: matching_subscription_event

UTP ID: MATCHING_SUBSCRIPTION_EVENT03

Version Control ID: 142dev version 2: slp_mask_utils.cpp	Test Seq Number: 	01

Test Conductor: Curt Stapleton				Test Date: 8/20/97

Purpose of Test:

To test successful execution of matching_subscription_event for the TRUE case. (where subscriber has no event data defined)

Actual Results:

function returned TRUE

__X___	PASS	_____	FAIL

(Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Report

					

Unit ID: matching_subscription_event

UTP ID: MATCHING_SUBSCRIPTION_EVENT04

Version Control ID: 142dev version 2: slp_mask_utils.cpp	Test Seq Number: 	01

Test Conductor: Curt Stapleton				Test Date: 8/20/97

Purpose of Test:

To test successful execution of matching_subscription_event for the FALSE case.

Actual Results:

function returned FALSE

__X___	PASS	_____	FAIL

(Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

Date: 8/21/97				

Unit ID: slp_monitor

UTP ID: SLP_MONITOR01

Version Control ID: 142dev version 2

Unit Function:

This function receives two snapshots, compares the snapshots, and if there is a difference between the snapshots, it sends the newer snapshot to all interested subscribers.

Requirement to be validated:

3.1.4.1 - Compare a new snapshot with an old one, and send the new one to subscribers

Test Tools, Drivers, or Special Conditions:

The function may be tested by calling test_slp_monitor, modifying the input parameters, and using the microsoft developer studio to halt execution at the call to slp_monitor, and then step through the function to verify correctness.

Input Data:

Two different snapshots

Expected Outcome:

slp_monitor will call clear_mask(1), slp_newold(1), data_changed(1), and slp_user(1)

Test Procedure Steps:

Set breakpoint in test_slp_monitor at first call to slp_monitor

Select “Test->Go” from MS Developer menu.

When trap is made, step into slp_monitor

Step over all function calls until funtion hits a return statement

Analysis Procedures:

If slp_monitor calls all functions listed in expected outcome and returns SLP_OK, then it has executed successfully.

�Unit Test Plan

Date: 8/21/97			

Unit ID: slp_monitor

UTP ID: SLP_MONITOR02

Version Control ID: 142dev version 2

Unit Function:

This function receives two snapshots, compares the snapshots, and if there is a difference between the snapshots, it sends the newer snapshot to all interested subscribers.

Requirement to be validated:

3.1.4.1 - Compare identical snapshots and then return

Test Tools, Drivers, or Special Conditions:

The function may be tested by calling test_slp_monitor, modifiying the input parameters, and using the microsoft developer studio to halt execution at the call to slp_monitor, and then step through the function to verify correctness.

Input Data:

Two identical snapshots

Expected Outcome:

slp_monitor will call clear_mask(1), slp_newold(1), data_changed(1)

Test Procedure Steps:

Set breakpoint in test_slp_monitor at first call to slp_monitor

Select “Test->Go” from MS Developer menu.

When trap is made, step into slp_monitor

Step over all function calls until funtion hits a return statement

Analysis Procedures:

If slp_monitor calls only all functions listed in expected outcome and returns SLP_OK, then it has executed successfully.

�Unit Test Report

					

Unit ID: slp_monitor

UTP ID: SLP_MONITOR01

Version Control ID: 142dev version 2			Test Seq Number: 	01

Test Conductor: Curt Stapleton				Test Date: 8/21/97

Purpose of Test:

To test successful execution of slp_monitor.

Actual Results:

1 call was made to clear_mask()

1 call was made to slp_newold()

1 call was made to slp_user()

status value was returned

__X___	PASS	_____	FAIL

(Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Report

					

Unit ID: slp_monitor

UTP ID: SLP_MONITOR02

Version Control ID: 142dev version 2			Test Seq Number: 	01

Test Conductor: Curt Stapleton				Test Date: 8/21/97

Purpose of Test:

To test successful execution of slp_monitor.

Actual Results:

1 call was made to clear_mask()

1 call was made to slp_newold()

status value was returned

___X__	PASS	_____	FAIL

(

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID:		slp_monitor					

UTP ID:		SLP_MONITOR01

Version Control ID:	SAIC V01-B01

Unit Function:

This function is responsible for comparing a new and an old snapshot and distributing it to interested subscribers.

Requirement to be validated:

3.1.4.2

Test Tools, Drivers, or Special Conditions:

Input Data:

new snapshot

Expected Outcome:

return BOOLEAN value indicating result of function calls.

Test Procedure Steps:

Call slp_monitor with a valid new snapshot

Call slp_monitor with an invalid snapshot

Analysis Procedures:

�Unit Test Report

					

Unit ID:		slp_monitor				

UTP ID:		SLP_MONITOR01

Version Control ID:	SAIC V01-B01		

Test Seq Number: 	01

Test Conductor:	Curt Stapleton

Test Date:		08/05/96

Purpose of Test:

Verify that the function executes as planned.

Actual Results:

Executed and returned a BOOLEAN value

Executed and returned a BOOLEAN value

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

Date: 8/21/97		

Unit ID: slp_newold

UTP ID: SLP_NEWOLD01

Version Control ID: 142dev version 2

Unit Function:

This function compares two snapshots and returns the changed events

Requirement to be validated:

3.1.4.2 - Identical snapshots

Test Tools, Drivers, or Special Conditions:

The function may be tested by calling test_slp_newold, modifiying the input parameters, and using the microsoft developer studio to halt execution at the call to slp_newold, and then stepping through the function to verify correctness.

Input Data:

two identical carrier snapshots

Expected Outcome:

slp_newold will call empty_snapshot()

slp_newold will call slp_compare_snapshots()

slp_newold will return a status value

Test Procedure Steps:

Set breakpoint in slp_monitor at first call to slp_newold

Select “Test->Go” from MS Developer menu.

When trap is made, verify that both snapshot inputs are identical

Step over all function calls until funtion hits a return statement

Analysis Procedures:

If slp_newold returns a status code after calling all functions listed in expected outcome, then it has executed successfully.�Unit Test Plan

Date: 8/21/97		

Unit ID: slp_newold

UTP ID: SLP_NEWOLD02

Version Control ID: 142dev version 2

Unit Function:

This function compares two snapshots and returns the changed events

Requirement to be validated:

3.1.4.2 - old_snapshot input is empty case

Test Tools, Drivers, or Special Conditions:

The function may be tested by calling test_slp_newold, modifiying the input paramters, and using the microsoft developer studio to halt execution at the call to slp_newold, and then stepping through the function to verify correctness.

Input Data:

two identical carrier snapshots

Expected Outcome:

slp_newold will call empty_snapshot()

slp_newold will call fill_mask()

slp_newold will return a status value

Test Procedure Steps:

Set breakpoint in slp_monitor at first call to slp_newold

Select “Test->Go” from MS Developer menu.

When trap is made, verify that both snapshot inputs are identical

Step over all function calls until funtion hits a return statement

Analysis Procedures:

If slp_newold returns a status code after calling all functions listed in expected outcome, then it has executed successfully.

�Unit Test Report

					

Unit ID: slp_newold

UTP ID: SLP_NEWOLD01

Version Control ID: 142dev version 2			Test Seq Number: 	01

Test Conductor: Curt Stapleton				Test Date: 8/21/97

Purpose of Test:

To test successful execution of slp_newold

Actual Results:

1 call was made to empty_snapshot()

1 call was made to slp_compare_snapshots

status value was returned

__X___	PASS	_____	FAIL

(Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Report

					

Unit ID: slp_newold

UTP ID: SLP_NEWOLD02

Version Control ID: 142dev version 2			Test Seq Number: 	01

Test Conductor: Curt Stapleton				Test Date: 8/21/97

Purpose of Test:

To test successful execution of slp_newold

Actual Results:

1 call was made to empty_snapshot()

1 call was made to fill_mask ()

status value was returned

__X___	PASS	_____	FAIL

(Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: slp_start

UTP ID: SLP_START01

Version Control ID: SAIC V01-B01	

Unit Function:

This function validates the event names that are listed in a subscription request

Requirement to be validated:

3.1.4.1

Test Tools, Drivers, or Special Conditions:

Input Data:

subscription request pointer

view pointer

event element list pointer

Expected Outcome:

a enumerated value indicating whether or not the event names listed in the subscription request are valid or not.

Test Procedure Steps:

Call function with valid subscription request pointer

Call function with invalid subscription request pointer

Call function with valid view pointer

Call function with invalid view pointer

Call function with valid element list pointer

Call function with invalid element list pointer

Call function with subscription request with valid event names

Call function with subscription request with invalid event names

Analysis Procedures:

�Unit Test Report

					

Unit ID: slp_start

UTP ID: SLP_START01	

Version Control ID: SAIC V01-B01			Test Seq Number: 	02

Test Conductor: Curt Stapleton			Test Date: 8/6/96

Purpose of Test:

To verify that the function executes as planned given various inputs.

Actual Results:

Works with valid subscription request pointer

Returns SLP_ERROR with NULL subscription request pointer

Works with valid view name

Returns SLP_ERROR with NULL view name

Works with valid element list pointer

Returns SLP_ERROR NULL element list pointer

Returns SLP_OK given valid event names

Returns SLP_ERROR given invalid event names

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: slp_start

UTP ID: SLP_START01_1

Version Control ID: SAIC V01-B01	

Unit Function:

This function validates the event names that are listed in a subscription request

Requirement to be validated:

3.1.4.1

Test Tools, Drivers, or Special Conditions:

Input Data:

subscription request pointer

view pointer

event element list pointer

Expected Outcome:

a enumerated value indicating whether or not the event names listed in the subscription request are valid or not.

Test Procedure Steps:

Call function with valid subscription request pointer

Call function with invalid subscription request pointer

Call function with valid view pointer

Call function with invalid view pointer

Call function with valid element list pointer

Call function with invalid element list pointer

Call function with subscription request with valid event names

Call function with subscription request with invalid event names

Analysis Procedures:

�Unit Test Report

					

Unit ID: slp_start

UTP ID: SLP_START01_1	

Version Control ID: SAIC V01-B01			Test Seq Number: 	01

Test Conductor: Curt Stapleton				Test Date: 8/6/96

Purpose of Test:

To verify that the function executes as planned given various inputs.

Actual Results:

Works with valid subscription request pointer

Crashes with NULL subscription request pointer

Works with valid view name

Crashes with NULL view name

Works with valid element list pointer

Crashes with NULL element list pointer

Returns SLP_OK given valid event names

Returns SLP_ERROR given invalid event names

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

Date: 8/27/97				

Unit ID: slp_tempwrite

UTP ID: SLP_TEMPWRITE01

Version Control ID: 142dev version 2

Unit Function:

This function writes entries to the sendlist q or sends snapshots to subscribers depending upon each subscriber’s process_time_type (immediately, daily, weekly, etc.).

Requirement to be validated:

3.1.4.2 - SLP_IMMEDIATELY case

Test Tools, Drivers, or Special Conditions:

The function may be tested by calling slp_tempwrite, modifiying the input parameters, and using the microsoft developer studio to step through the function to verify correctness.

Input Data:

subscription_t pointer to valid subscription_t struct

update_data_t pointer to valid update_data_t struct containing a snapshot

subscription.process_time_type = SLP_IMMEDIATELY

Expected Outcome:

slp_tempwrite will call SDB_Get_Subscription_Users, OMH_output_message_generator and then return a status value

Test Procedure Steps:

Set breakpoint in test_slp at first call to slp_tempwrite

Select “Test->Go” from MS Developer menu.

When trap is made, step into slp_tempwrite

Step over all function calls until function hits a return statement

Analysis Procedures:

If slp_tempwrite returns a status code after calling all functions listed in expected outcome, then it has executed successfully.

�Unit Test Report

					

Unit ID: slp_tempwrite

UTP ID: SLP_TEMPWRITE01

Version Control ID: 142dev version 2			Test Seq Number: 	01

Test Conductor: Curt Stapleton				Test Date: 8/27/97

Purpose of Test:

To test successful execution of slp_tempwrite

Actual Results:

function called SDB_Get_Subscription_Users, OMH_output_message_generator and returned a status value.

___X__	PASS	_____	FAIL

(Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

Date: 6/12/97				

Unit ID: slp_tempwrite

UTP ID: SLP_TEMPWRITE02

Version Control ID: 142dev version 2

Unit Function:

This function writes entries to the sendlist q or sends snapshots to subscribers depending upon each subscriber’s process_time_type (immediately, daily, weekly, etc.).

Requirement to be validated:

3.1.4.2 - NOT SLP_IMMEDIATELY case

Test Tools, Drivers, or Special Conditions:

The function may be tested by calling test_slp_tempwrite, modifying the input parameters, and using the microsoft developer studio to halt execution at the call to slp_tempwrite, and then stepping through the function to verify correctness.

Input Data:

subscription_t pointer to valid subscription_t struct

update_data_t pointer to valid update_data_t struct containing a snapshot

subscription.process_time_type = SLP_DAILY

Expected Outcome:

slp_tempwrite will call sdb_insert_into_sendlist_q and then return a status value

Test Procedure Steps:

Set breakpoint in test_slp_tempwrite at first call to slp_tempwrite

Select “Test->Go” from MS Developer menu.

When trap is made, step into slp_tempwrite

Step over all function calls until function hits a return statement

Analysis Procedures:

If slp_tempwrite returns a status code after calling all functions listed in expected outcome, then it has executed successfully.

�Unit Test Report

					

Unit ID: slp_tempwrite

UTP ID: SLP_TEMPWRITE02

Version Control ID: 142dev version 2			Test Seq Number: 	01

Test Conductor: Curt Stapleton				Test Date: 8/27/97

Purpose of Test:

To test successful execution of slp_tempwrite

Actual Results:

function called sdb_insert_into_sendlist_q and returned a status value.

___X__	PASS	_____	FAIL

(Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: slp_tempwrite

UTP ID: SLP_TEMPWRITE01

Version Control ID: SAIC V01-B01	

Unit Function:

Currently this function is responsible for receiving a pointer to a subscription and a pointer to a snapshot, and sending the snapshot to user defined in the subscription via the safety data manager.

Requirement to be validated:

3.1.4.2

Test Tools, Drivers, or Special Conditions:

Input Data:

subscription pointer

snapshot pointer

Expected Outcome:

function should call sdm with correct packet header, request header, and data request, and then return a BOOLEAN value.

Test Procedure Steps:

Call function with valid subscription pointer and snapshot pointer

Call function with invalid subscription pointer and valid snapshot pointer

Call function with invalid snapshot pointer and valid subscription.

Call function with invalid subscription pointer and invalid subscription

Analysis Procedures:

�Unit Test Report

					

Unit ID: slp_tempwrite

UTP ID: SLP_TEMPWRITE01	

Version Control ID: SAIC V01-B01			Test Seq Number: 	02

Test Conductor: Curt Stapleton			Test Date: 8/6/96

Purpose of Test:

To verify function behaves as planned, given each possible input.

Actual Results:

Function works fine with valid inputs

Function returns SLP_ERROR when given one or two null pointers

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: slp_tempwrite

UTP ID: SLP_TEMPWRITE01_1

Version Control ID: SAIC V01-B01	

Unit Function:

Currently this function is responsible for receiving a pointer to a subscription and a pointer to a snapshot, and sending the snapshot to user defined in the subscription via the safety data manager.

Requirement to be validated:

3.1.4.2

Test Tools, Drivers, or Special Conditions:

Input Data:

subscription pointer

snapshot pointer

Expected Outcome:

function should call sdm with correct packet header, request header, and data request, and then return a BOOLEAN value.

Test Procedure Steps:

Call function with valid subscription pointer and snapshot pointer

Call function with invalid subscription pointer and valid snapshot pointer

Call function with invalid snapshot pointer and valid subscription.

Call function with invalid subscription pointer and invalid subscription

Analysis Procedures:

�Unit Test Report

					

Unit ID: slp_tempwrite

UTP ID: SLP_TEMPWRITE01_1

Version Control ID: SAIC V01-B01			Test Seq Number: 	01

Test Conductor: Curt Stapleton			Test Date: 8/5/96

Purpose of Test:

To verify function behaves as planned, given each possible input.

Actual Results:

Function works fine with valid inputs

Functions crashes when given one or two null pointers

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

Date: 8/21/97				

Unit ID: slp_user

UTP ID: SLP_USER01

Version Control ID: 142dev version 2

Unit Function:

This function checks a given snapshot with every subscription in the database to determine if each subscriber is interested in it. If the subscriber is interested, then the subscribers event mask is compared to the given event mask. If the subscriber is interested, and the event masks have a matching value, then the snapshot is sent to slp_tempwrite for further processing.

Requirement to be validated:

3.1.4.2 - No subscribers are interested in snapshot based on carrier

Test Tools, Drivers, or Special Conditions:

The function may be tested by calling slp_monitor, modifying the input parameters, and using the microsoft developer studio to halt execution at the call to slp_user, and then stepping through the function to verify correctness.

Input Data:

SLP_event_mask_t struct, and an update header struct containing a snapshot that no subscriber in the database wants based on carrier.

Expected Outcome:

slp_user will call sdb_get_newlist twice. The status code SLP_OK will be returned by slp_user.

Test Procedure Steps:

Set breakpoint in slp_monitor at first call to slp_user

Select “Test->Go” from MS Developer menu.

When trap is made, step into slp_user

Step over all function calls

Verify that function calls listed above in “Expected Outcome” were made and SLP_OK was returned

Analysis Procedures:

If slp_user returns a status code of SLP_OK after calling all functions listed in expected outcome, then it has executed successfully.

�Unit Test Plan

Date: 8/21/97				

Unit ID: slp_user

UTP ID: SLP_USER02

Version Control ID: 142dev version 2

Unit Function:

This function checks a given snapshot with every subscription in the database to determine if each subscriber is interested in it. If the subscriber is interested, then the subscribers event mask is compared to the given event mask. If the subscriber is interested, and the event masks have a matching value, then the snapshot is sent to slp_tempwrite for further processing.

Requirement to be validated:

3.1.4.2 - Subscriber wants snapshot based on carrier but NOT event

Test Tools, Drivers, or Special Conditions:

The function may be tested by calling slp_monitor, modifying the input parameters, and using the microsoft developer studio to halt execution at the call to slp_user, and then stepping through the function to verify correctness.

Input Data:

SLP_event_mask_t struct, and an update header struct containing a snapshot that no subscriber in the database wants based on carrier.

Expected Outcome:

slp_user will call sdb_get_newlist twice, slp_listmov once, matching_subscription_event once, and the status code SLP_OK will be returned by slp_user.

Test Procedure Steps:

Set breakpoint in slp_monitor at first call to slp_user

Select “Test->Go” from MS Developer menu.

When trap is made, step into slp_user

Step over all function calls

Verify that function calls listed above in “Expected Outcome” were made and SLP_OK was returned

Analysis Procedures:

If slp_user returns a status code of SLP_OK after calling all functions listed in expected outcome, then it has executed successfully.

�Unit Test Plan

Date: 8/21/97				

Unit ID: slp_user

UTP ID: SLP_USER03

Version Control ID: 142dev version 2

Unit Function:

This function checks a given snapshot with every subscription in the database to determine if each subscriber is interested in it. If the subscriber is interested, then the subscribers event mask is compared to the given event mask. If the subscriber is interested, and the event masks have a matching value, then the snapshot is sent to slp_tempwrite for further processing.

Requirement to be validated:

3.1.4.2 - Subscriber wants snapshot based on carrier AND event

Test Tools, Drivers, or Special Conditions:

The function may be tested by calling slp_monitor, modifying the input parameters, and using the microsoft developer studio to halt execution at the call to slp_user, and then stepping through the function to verify correctness.

Input Data:

SLP_event_mask_t struct, and an update header struct containing a snapshot that no subscriber in the database wants based on carrier.

Expected Outcome:

slp_user will call sdb_get_newlist twice, slp_listmov once, matching_subscription_event once, slp_tempwrite once, and the status code SLP_OK will be returned by slp_user.

Test Procedure Steps:

Set breakpoint in slp_monitor at first call to slp_user

Select “Test->Go” from MS Developer menu.

When trap is made, step into slp_user

Step over all function calls

Verify that function calls listed above in “Expected Outcome” were made and SLP_OK was returned

Analysis Procedures:

If slp_user returns a status code of SLP_OK after calling all functions listed in expected outcome, then it has executed successfully.

�Unit Test Report

					

Unit ID: slp_user

UTP ID: SLP_USER01

Version Control ID: 142dev version 2			Test Seq Number: 	01

Test Conductor: Curt Stapleton				Test Date: 8/25/97

Purpose of Test:

To test successful execution of slp_user

Actual Results:

slp_get_newlist was called twice

status value SLP_OK was returned

__X___	PASS	_____	FAIL

(Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Report

					

Unit ID: slp_user

UTP ID: SLP_USER02

Version Control ID: 142dev version 2			Test Seq Number: 	01

Test Conductor: Curt Stapleton				Test Date: 8/25/97

Purpose of Test:

To test successful execution of slp_user

Actual Results:

slp_get_newlist was called twice

matching_subscription_event was called once.

status value SLP_OK was returned

__X___	PASS	_____	FAIL

(Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Report

					

Unit ID: slp_user

UTP ID: SLP_USER03

Version Control ID: 142dev version 2			Test Seq Number: 	01

Test Conductor: Curt Stapleton				Test Date: 8/25/97

Purpose of Test:

To test successful execution of slp_user

Actual Results:

slp_get_newlist was called twice

matching_subscription_event was called once

slp_tempwrite was called once

status value SLP_OK was returned

_____	PASS	_____	FAIL

(Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�

Appendix F - Unit Test (IMH)

Input Message Handler (IMH)

Unit Test Plans

�Unit Test Plan

				

Unit ID: IMH_Main

UTP ID: IMH_Main

Version Control ID: APL V01-B04	

Unit Function:

This routine initializes all CVIEW functions, reads incoming mail messages, and performs all processing. It is the top level routine for the entire CVIEW system. It also contains all routines necessary to initialize, run, and terminate CVIEW as an NT service.

Requirement to be validated:

IMH can initialize database access using Oracle v7.3 and perform other initializations to support mail message access, EDI processing, and interfacing with the NT operating system.

IMH can read input messages from an NT mailbox.

IMH can run as an NT service.

IMH can correctly translate valid incoming messages and route them to the appropriate routines for processing. It can identify and reject invalid incoming messages without crashing.

IMH processing can be terminated gracefully without causing any supporting software to crash, hang, or corrupt a database.

Test Tools, Drivers, or Special Conditions:

The Visual C++ debugger was used as a test tool to step through the routine and view data at each stage. The EudoraLite mail package was used to send the email message to the CVIEW input mailbox. The Distinct SMTP and POP mail protocol libraries, and associated MBX routines were used to extract the message from the input mailbox into a temporary file for further processing. The SQLPlus utility was used to view records in the database tables. The ServiceInstall and ServiceDelete utilities were used to test installation of IMH as an NT service.

Input Data:

A lengthy sequence of input test messages were used and were saved in EudoraLite mail queues. EDI test messages with line lengths too long for convenient handling in EudoraLite were stored in text files and mailed to the input mailbox using a utility developed with Visual C++ and the Distinct libraries.

Expected Outcome:

IMH_Main will run correctly as an NT service as well as with the command line interface. It will successfully read any quantity of input test messages sent to the input mailbox. It will route valid ones for processing, and reject invalid ones. The service may be terminated by using the services utility within the NT control panel.

Test Procedure Steps:

Install IMH as an NT service. Start the service.

Send a variety of messages to the CVIEW input mailbox- carrier snapshot requests by DOT number, requests by ICC number, single record carrier snapshot updates, MCMIS file update messages, subscription requests. Include some invalid messages.

Verify that carrier snapshot requests resulted in either a valid snapshot or an error message being sent to the requester’s mailbox.

Use SQLPlus to verify that database updates, whether single record or MCMIS, occurred.

Check that a valid CVIS file was produced during the MCMIS update.

Check subscriber mailboxes to ensure that they received all snapshots for which they held a subscription.

Verify that no extraneous data was sent to user or subscription mailboxes.

Verify that the NT service can be stopped without any problems.

Analysis Procedures:

�Unit Test Report

					

Unit ID: IMH_Main

UTP ID: IMH_Main	

Version Control ID: APL V01-B04			Test Seq Number: 1

Test Conductor: Grace McGonnigal			Test Date: � TIME \@ "M/d/yy" �9/8/97�

Purpose of Test:

To insure that the IMH_Main routine can start, initialize, run, and terminate properly as an NT service, can read mail messages from its input mailbox, and can correctly route mail messages through the processing cycle.

Actual Results:

IMH_Main was able to start, run, and terminate as an NT service.

IMH_Main properly initialized database, EDI, and mail functions.

IMH_Main properly read mail messages from its input mailbox.

IMH_Main routed mail messages and subsequent filled CVIEW data structures through the complete processing cycle.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: INPUT_distribute_message

UTP ID: INPUT_distribute_message

Version Control ID: APL V01-B04	

Unit Function:

This routine receives all CVIEW data structures- packet_header, request_header, request, data_header, and update data- filled with information gleaned from the mail message, analyzes them to decide on required processing, and routes them to the proper routines to complete the processing.

Requirement to be validated:

Transactions (requests and updates) indicated in the packet header will be processed by being passed to the proper SDM and database access routines..

The data types, entities, and views indicated in the structures will be the ones used to fulfill the transactions.

Test Tools, Drivers, or Special Conditions:

The Visual C++ debugger was used as a test tool to step through the routine and view data at each stage. The EudoraLite mail package was used to send the email message to the CVIEW input mailbox. The Distinct SMTP and POP mail protocol libraries, and associated MBX routines were used to extract the message from the input mailbox into a temporary file for further processing. The SQLPlus utility was used to view records in the database tables.

Input Data:

A lengthy sequence of input test messages were used and were saved in EudoraLite mail queues. EDI test messages with line lengths too long for convenient handling in EudoraLite were stored in text files and mailed to the input mailbox using a utility developed with Visual C++ and the Distinct libraries.

Expected Outcome:

INPUT_distribute_message will correctly route update data and result in the record being added to the database. It will correctly process requests and return the correct snapshot to the user’s mailbox.

Test Procedure Steps:

Send a variety of messages to the CVIEW input mailbox- carrier snapshot requests by DOT number, requests by ICC number, single record carrier snapshot updates, MCMIS file update messages, subscription requests.

After IMH processes the message, use SQLPlus to verify that updates to the database were performed correctly.

Also check requester and subscriber mailboxes to be sure that snapshots were received and were in the correct format.

Analysis Procedures:

�Unit Test Report

					

Unit ID: INPUT_distribute_message

UTP ID: INPUT_distribute_message	

Version Control ID: APL V01-B04			Test Seq Number: 1

Test Conductor: Grace McGonnigal			Test Date: 4/15/97

Purpose of Test:

To ensure that incoming CVIEW data structures- packet_header, request_header, request, data_header, and update data- containing information from mail messages, are processed properly.

Actual Results:

A complete set of valid test messages resulted in CVIEW data structures filled with data.

In each case, INPUT_distribute_message correctly analyzed the structures to decide on required processing, and routed the data to the correct routines to perform that processing.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: INPUT_initialize

UTP ID: INPUT_initialize

Version Control ID: APL V01-B04	

Unit Function:

This routine executes when the CVIEW service starts. It initializes database function, the EDI translator, and the mail function. It also initializes timers controlling access to subscription mailboxes.

Requirement to be validated:

INPUT_initialize correctly initializes database access.

INPUT_initialize correctly initializes the EDI translator.

INPUT_initialize correctly initializes the mail input and output.

INPUT_initialize correctly starts timers to control access to subscription mailboxes.

Test Tools, Drivers, or Special Conditions:

The Visual C++ debugger was used as a test tool to step through the routine and view data at each stage.

Input Data:

Two initialization files- WIN.INI and WINMBX.INI were used. The user inputs a section name when starting the NT service to determine which section within these initialization files are used.

Expected Outcome:

The database indicated in the correct section of WIN.INI will be successfully connected to.

The file WINMBX.INI will be located and read based on a pointer in WIN.INI.

The input and output mailboxes indicated in the correct section of WINMBX.INI will be successfully initialized.

The EDI translator will be successfully initialized based on a series of parameters read from the correct section of WIN.INI.

Subscription mailbox timers will be started based on a series of parameters read from the correct section of WINMBX.INI.

Test Procedure Steps:

Start the CVIEW service in command line form so that the debugger can be used.

Step into the INPUT_initialize routine.

Step through section of code that initializes subscription mailbox timers and verify that success codes are returned.

Step through section of code that initializes the database function. Verify that database name, password, and host string match those requested in WIN.INI. Verify that SDB_init routine returns a success status code.

Step through section of code that initializes the EDI/IOT translator. Verify that filepaths are correctly set in the EDI/IOT structures. Verify that a success code is returned.

Step through section of code that initializes the CVIEW input and output mailbox. Verify that success codes are returned.

To double check, stop stepping through, use “Go” mode, and process a few messages to verify that all initializations are complete.

Analysis Procedures:

�Unit Test Report

					

Unit ID: INPUT_initialize

UTP ID: INPUT_initialize	

Version Control ID: APL V01-B04			Test Seq Number: 1

Test Conductor: Grace McGonnigal			Test Date: 4/15/97

Purpose of Test:

To insure that all initializations required by the CVIEW process are performed successfully.

Actual Results:

Database function was initialized successfully.

Subscription timers were initialized successfully.

The EDI/IOT translator was initialized successfully.

The CVIEW input and output mailboxes were initialized successfully.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: INPUT_message_translator

UTP ID: INPUT_message_translator

Version Control ID: APL V01-B04	

Unit Function:

This routine reads an input file containing a subscription request in text format and transfers the information into the subscription request structure.

Requirement to be validated:

IMH can accept a subscription request via email message and correctly transfer the information into the SLP_subscription_req_t structure for further processing and insertion into the subscription database table.

IMH can also correctly interpret the subscriber parameters (dot number or state codes) in the email message for future insertion into the subscriber_parms database table.

Test Tools, Drivers, or Special Conditions:

The Visual C++ debugger was used as a test tool to step through the routine and view data at each stage. The EudoraLite mail package was used to send the email message to the CVIEW input mailbox. The Distinct SMTP and POP mail protocol libraries, and associated MBX routines were used to extract the message from the input mailbox into a temporary file for further processing. The SQLPlus utility was used to view records in the database tables.

Input Data:

Input messages entitled SLP test 1, 2, and 3 were used and were saved in EudoraLite mail queues.

Expected Outcome:

A subscriber with the correct name (name of user mailing the message to the CVIEW input mailbox) will be added to the subscription table in the database. The new subscriber will have a unique subscription_id..

The list of DOT numbers contained in the message as subscriber parameters will be added to the subscriber_parms table with this user’s subscription_id as the key and query_parm_value equal to 1.

The list of state two character codes will be added to the subscriber_parms table with this user’s subscription_id as the key and query_parm_value equal to 6.

Test Procedure Steps:

Obtain files containing valid subscription request message. Copy them into EudoraLite message windows and send to the CVIEW input mailbox.

Use SQLPlus manual database queries to verify that the subscription does not yet exist in the database.

Start the IMH (Input Message Handler) in command line form.

Step through in the debugger. After executing INPUT_message_translator, use the debugger to view the entire SLP_subscription_req_t structure.

Check each field.

Double check by executing INPUT_distribute_message, which completes processing of each test message. Then use SQLPlus manual queries to verify that the subscription was correctly entered in the database.

Analysis Procedures:

�Unit Test Report

					

Unit ID: INPUT_message_translator

UTP ID: INPUT_message_translator	

Version Control ID: APL V01-B04			Test Seq Number: 1

Test Conductor: Grace McGonnigal			Test Date: � TIME \@ "M/d/yy" �9/8/97�

Purpose of Test:

To insure that a text file containing a carrier snapshot in EDI record format can be read and correctly copied into the cs_v1_t structure.

Actual Results:

The information was correctly read from the text file and inserted into the cs_v1_t structure.

Repeating fields were properly counted and loaded. The counters were set correctly in the structure.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: INPUT_read_subscription_request

UTP ID: INPUT_read_subscription_request

Version Control ID: APL V01-B04	

Unit Function:

This routine reads an input file containing a subscription request in text format and transfers the information into the subscription request structure.

Requirement to be validated:

IMH can accept a subscription request via email message and correctly transfer the information into the SLP_subscription_req_t structure for further processing and insertion into the subscription database table.

IMH can also correctly interpret the subscriber parameters (dot number or state codes) in the email message for future insertion into the subscriber_parms database table.

Test Tools, Drivers, or Special Conditions:

The Visual C++ debugger was used as a test tool to step through the routine and view data at each stage. The EudoraLite mail package was used to send the email message to the CVIEW input mailbox. The Distinct SMTP and POP mail protocol libraries, and associated MBX routines were used to extract the message from the input mailbox into a temporary file for further processing. The SQLPlus utility was used to view records in the database tables.

Input Data:

Input messages entitled SLP test 1, 2, and 3 were used and were saved in EudoraLite mail queues.

Expected Outcome:

A subscriber with the correct name (name of user mailing the message to the CVIEW input mailbox) will be added to the subscription table in the database. The new subscriber will have a unique subscription_id..

The list of DOT numbers contained in the message as subscriber parameters will be added to the subscriber_parms table with this user’s subscription_id as the key and query_parm_value equal to 1.

The list of state two character codes will be added to the subscriber_parms table with this user’s subscription_id as the key and query_parm_value equal to 6.

Test Procedure Steps:

Obtain files containing valid subscription request message. Copy them into EudoraLite message windows and send to the CVIEW input mailbox.

Use SQLPlus manual database queries to verify that the subscription does not yet exist in the database.

Start the IMH (Input Message Handler) in command line form.

Step through in the debugger. After executing INPUT_read_subscription_request, use the debugger to view the entire SLP_subscription_req_t structure.

Check each field.

Double check by executing INPUT_distribute_message, which completes processing of each test message. Then use SQLPlus manual queries to verify that the subscription was correctly entered in the database.

Analysis Procedures:

�Unit Test Report

					

Unit ID: INPUT_read_subscription_request

UTP ID: INPUT_read_subscription_request	

Version Control ID: APL V01-B04			Test Seq Number: 1

Test Conductor: Grace McGonnigal			Test Date: 4/15/97

Purpose of Test:

To insure that a mail message containing a request to set up a subscription and to add subscriber parameters (DOT numbers or state codes) to the subscription can be parsed and the information stored in CVIEW data structures for eventual updating of the database subscription and subscriber_parms tables..

Actual Results:

Subscription request messages were correctly processed and the information stored in CVIEW data structures.

Subscriptions were set up and subscriber parameters added to the database table.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: INPUT_subscription_update

UTP ID: INPUT_subscription_update

Version Control ID: APL V01-B04	

Unit Function:

This routine executes when the subscription mailbox timer has rung and a flag been set. The subscription mailbox is initialized and connected to. All carrier snapshot updates in that mailbox are read and routed for further processing that includes being written to the database and being sent to subscribers. On completion, the subscription mailbox is disconnected. Information is written to a mailbox timer log to record that the mailbox was checked, and identifying the carrier snapshots (if any) that were processed.

Requirement to be validated:

A subscription mailbox can be checked based on a timer.

Subscription mailboxes can be connected to and disconnected from in this context.

Any carrier snapshot updates contained in that subscription mailbox can be read and processed correctly.

Test Tools, Drivers, or Special Conditions:

The Visual C++ debugger was used as a test tool to step through the routine and view data at each stage.

The EudoraLite mail package was used to send the email message to the CVIEW input mailbox. The Distinct SMTP and POP mail protocol libraries, and associated MBX routines were used to extract the message from the input mailbox into a temporary file for further processing. The SQLPlus utility was used to view records in the database tables.

Input Data:

A test subscription mailbox was loaded with data by running a test MCMIS update with it as a subscriber for about ten DOT numbers known to exist in the MCMIS file. The carrier snapshot updates were altered by adding the number nine million to their DOT numbers. A copy of the subscription mailbox was saved in case the test needed to be run more than once.

Expected Outcome:

The mailbox timer will ring, set a flag, and INPUT_subscription_update will be executed.

The subscription mailbox will be successfully initialized.

Each carrier snapshot in turn will be read from the subscription mailbox and will be processed by calling other routines to write it to the database.

The subscription mailbox will be disconnected.

The mailbox timer log will indicate that the subscription mailbox was checked, at what time, and will list the DOT numbers of the carrier snapshots read from it.

Test Procedure Steps:

Have the subscription mailbox loaded with the carrier snapshots with DOT numbers altered to exceed nine million and therefor not equal any valid snapshots.

Verify that the test database contains no DOT numbers nine million or higher.

Using the debugger, set a break point at the INPUT_subscription_update routine.

Verify that the subscription mailbox initializes properly.

Verify that the first carrier snapshot update is read from the mailbox.

Change from step mode to run mode and allow CVIEW to process all remaining subscription updates.

Check the MailboxTimerLog to verify that time of subscription mailbox access and DOT numbers of carrier snapshot updates were recorded.

Use SQLPlus to verify that the ten subscription updates were written to the database.

Also use SQLPlus to delete the records from the database.

Analysis Procedures:

�Unit Test Report

					

Unit ID: INPUT_subscription_update

UTP ID: INPUT_subscription_update	

Version Control ID: APL V01-B04			Test Seq Number: 1

Test Conductor: Grace McGonnigal			Test Date: 4/15/97

Purpose of Test:

To insure that all initializations required by the CVIEW process are performed successfully.

To insure that a subscription mailbox can be read on a timer and any carrier snapshot updates contained within it processed and written to the database.

Actual Results:

.

Ringing of the timer handed control to the INPUT_subscription_update routine.

Subscription mailbox was initialized, connected to, and disconnected from properly.

The test update messages were read from the subscription mailbox, processed, and written to the database.

The log indicated time of subscription mailbox access, and which DOT numbers were processed.

 Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�

Appendix G - Unit Test (IOT)

Input/Output Translator (IOT)

Unit Test Plans and Test Reports�� QUOTE * MERGEFORMAT �Unit Test Plan

Unit ID: IOT_add_outgoing_message

UTP ID: IOT_ADD_OUTG1

Version Control ID: IOT V1.1

Unit Function:

converts a single snapshot, query, subscription request, or other transaction from internal form to application text file records and appends the records to a file in order to generate a multi-transaction outgoing message.

Requirement to be validated:

Test Tools, Drivers, or Special Conditions:

Test Driver: multicsnapout.cpp

Input Data:

Snapshot Query Type

Snapshot view

Snapshot Query Parameters

Message Format

Message Compression

Expected Outcome:

carrier snapshot application text file records are appended to the application text file

Test Procedure Steps:

log onto CVIEW DB

Build and execute snapshot query

fill data structures with snapshot and other input data

call IOT_add_outgoing_transaction

Analysis Procedures:

examine application text file and verify records are correct

�� QUOTE * MERGEFORMAT �Unit Test Report

Unit ID: IOT_add_outgoing_message

UTP ID: IOT_ADD_OUTG1

Version Control ID: IOT V1.1

Test Seq Number: 1

Test Conductor: R.H. Goldfarb			Test Date: � TIME \@ "M/d/yy" �9/8/97�

Purpose of Test:

To verify that a single transaction can be added to a multi-transaction application text file

Actual Results:

application text file records corresponding to a carrier snapshot were added to the application text file

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: IOT_add_outgoing_message

UTP ID: IOT_ADD_OUTG2

Version Control ID: IOT V1.1

Unit Function:

converts a single snapshot, query, subscription request, or other transaction from internal form to application text file records and appends the records to a file in order to generate a multi-transaction outgoing message.

Requirement to be validated:

Test Tools, Drivers, or Special Conditions:

Test Driver: outcqry.cpp

Input Data:

Snapshot Query Type

Snapshot view

Snapshot Query Parameters

Overnight Flag

CDROM Flag

File Transfer Flag

Media Type

Message Format

Message Compression

Expected Outcome:

carrier snapshot query application text file records are appended to the application text file

Test Procedure Steps:

fill data structures with input data

call IOT_add_outgoing_transaction

Analysis Procedures:

examine application text file and verify records are correct

�Unit Test Report

Unit ID: IOT_add_outgoing_message

UTP ID: IOT_ADD_OUTG2

Version Control ID: IOT V1.1

Test Seq Number: 1

Test Conductor: R.H. Goldfarb			Test Date: � TIME \@ "M/d/yy" �9/8/97�

Purpose of Test:

To verify that a single transaction can be added to a multi-transaction application text file

Actual Results:

application text file records corresponding to a carrier snapshot query were added to the application text file

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: iot_build_C35_vrecord

UTP ID: IOT_BLD_C35_1

Version Control ID: IOT V1.1

Unit Function:

converts carrier operation type data contained in a CVIEW internal snapshot data structure into a variable length application text file record

Requirement to be validated:

Test Tools, Drivers, or Special Conditions:

Test Driver: outcsnap.cpp

Input Data:

carrier snapshot with multiple carrier operation types set

Expected Outcome:

a properly formatted C35 application text file record is generated for each operation type set

Test Procedure Steps:

fill data structures with carrier snapshot data

call iot_build_C35_vrecord for each operation type field set in snapshot

Analysis Procedures:

examine resulting C35 record and verify it is correct

�Unit Test Report

					

Unit ID: iot_build_C35_vrecord

UTP ID: IOT_BLD_C35_1

Version Control ID: IOT V1.1

Test Seq Number: 1

Test Conductor: R.H. Goldfarb			Test Date: � TIME \@ "M/d/yy" �9/8/97�

Purpose of Test:

to verify that a properly constructed C35 record is built from carrier snapshot operations information

Actual Results:

C35 records containing appropriate operations codes were generated from the carrier snapshot data

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: iot_build_CS1_vrecord

UTP ID: IOT_BLD_CS1_1

Version Control ID: IOT V1.1

Unit Function:

converts portion of carrier snapshot data contained in CVIEW internal data structure into a variable length application text file record

Requirement to be validated:

Test Tools, Drivers, or Special Conditions:

Test Driver: outcsnap.cpp

Input Data:

Snapshot Data

Snapshot view

Expected Outcome:

a properly formatted CS1 application text file record is generated

Test Procedure Steps:

fill data structures with snapshot data

call iot_build_CS1_vrecord

Analysis Procedures:

examine resulting CS1 record and verify it is correct

�Unit Test Report

					

Unit ID: iot_build_CS1_vrecord

UTP ID: IOT_BLD_CS1_1

Version Control ID: IOT V1.1			

Test Seq Number: 1

Test Conductor: R.H. Goldfarb			Test Date: � TIME \@ "M/d/yy" �9/8/97�

to verify that a properly constructed CS1 record is built from carrier snapshot information

Actual Results:

a properly CS1 record containing appropriate data was generated from the carrier snapshot

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: iot_build_error_msg

UTP ID: IOT_BLD_ERR_MSG1

Version Control ID: IOT V1.1

Unit Function:

builds an application text file format error response transaction from error data contained in internal data structures for conversion to EDI 824 transaction or as non EDI application text format message

Requirement to be validated:

Test Tools, Drivers, or Special Conditions:

Test Driver: gen_err_msg.cpp

Input Data:

transaction tracking number

error status = did not process

error reason = no match

Expected Outcome:

application text file records representing a NO MATCH error will be generated

Test Procedure Steps:

fill data structures with input data

call iot_build_error_msg

Analysis Procedures:

examine application text file records and verify that they are correct

�Unit Test Report

					

Unit ID: iot_build_error_msg

UTP ID: IOT_BLD_ERR_MSG1

Version Control ID: IOT V1.1

Test Seq Number: 1

Test Conductor: R.H. Goldfarb			Test Date: � TIME \@ "M/d/yy" �9/8/97�

Purpose of Test:

to verify that correct application text file records corresponding to a “NO MATCH” error response message are generated

Actual Results:

application text file records for a “NO MATCH” error response message were generated

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: iot_build_error_msg

UTP ID: IOT_BLD_ERR_MSG2

Version Control ID: IOT V1.1

Unit Function:

builds an application text file format error response transaction from error data contained in internal data structures for conversion to EDI 824 transaction or as non EDI application text format message

Requirement to be validated:

Test Tools, Drivers, or Special Conditions:

Test Driver: gen_err_msg.cpp

Input Data:

transaction tracking number

error status = reject

error reason = bad value

several data element code values

error reason codes corresponding to each data element

Expected Outcome:

application text file records representing a REJECTED transaction and containing the data element values, error message text, and error reason codes will be generated

Test Procedure Steps:

fill data structures with input data

call iot_build_error_msg

Analysis Procedures:

verify that generated records are correct

�Unit Test Report

					

Unit ID: iot_build_error_msg

UTP ID: IOT_BLD_ERR_MSG2

Version Control ID: IOT V1.1			

Test Seq Number: 1

Test Conductor: R.H. Goldfarb			Test Date: � TIME \@ "M/d/yy" �9/8/97�

Purpose of Test:

to verify that correct application text file records corresponding to a “REJECTED TRANSACTION” error response message are generated

Actual Results:

application text file records for a “REJECTED TRANSACTION” error response message were generated

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________�Unit Test Plan

				

Unit ID: iot_build_insp_summary

UTP ID: IOT_BLD_INSP_SUMM

Version Control ID: IOT V1.2.2

Unit Function:

generates records containing extracted data from inspection reports. The records are stored in a file, which is compressed and added to the zip archive containing the associated inspection report files (also in compressed form), during the process of generating a response to a inspection report query.

Requirement to be validated:

generate inspection report summary records containing:

- inspection report number

- report file name

- license plate

- state

- driver's license number

- driver's license state

- county code

- inspection time 24 hr - (HH:MM)

 - inspection date (MM/DD/YY)

Test Tools, Drivers, or Special Conditions:

Test Driver: out_ir.cpp

Input Data:

Inspection report Data

Expected Outcome:

a file containing one record for each inspection report is generated

Test Procedure Steps:

extract inspection report from SAFER DB via inspection report query

call IOT_start_outgoing_messsage

call IOT_add_transaction

Analysis Procedures:

verify generated records contain correctly formatted data from the inspection reports extracted from the db

�Unit Test Report

					

Unit ID: iot_build_insp_summary

UTP ID: IOT_BLD_INSP_SUMM

Version Control ID: IOT V1.2.2

Test Conductor: R.H. Goldfarb			Test Date: 8/27/97

Purpose of Test:

to verify that the appropriate inspection report summary records are generated

Actual Results:

inspection report summary records containing the 9 required data elements were generated. The data in each record corresponded to the associated inspection report.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: iot_build_IR_app_file

UTP ID: IOT_BLD_IR_APP1

Version Control ID: IOT V1.2.2

Unit Function:

generates a non EDI message file, which provides the contents of the email message body that accompanies and identifies a zipped archive containing inspection reports. The message file is sent by SAFER to clients as the response to their inspection report query.

Requirement to be validated:

generate an non EDI file, which can be converted to an EDI message and will accompany an inspection report and identify the message as an inspection report when received by the client.

Test Tools, Drivers, or Special Conditions:

Test Driver: out_ir.cpp

Input Data:

Inspection report Data

Message format = Application text file

Expected Outcome:

a non EDI message file is generated

Test Procedure Steps:

extract inspection report from SAFER DB via inspection report query

call IOT_start_outgoing_messsage

call IOT_add_transaction to insert inspection report data

call IOT_finish_outgoing_message to cause non EDI IR application text file to be generated

Analysis Procedures:

verify that the T01 and T02 records in the non EDI application text file are correctly formatted

�Unit Test Report

					

Unit ID: iot_build_IR_app_file

UTP ID: IOT_BLD_IR_APP1

Version Control ID: IOT V1.2.2

Test Conductor: R.H. Goldfarb			Test Date: 8/27/97

Purpose of Test:

to verify that a correctly formatted non EDI application text file is generated

Actual Results:

a non EDI application text file containing T01 & T02 records was generated..

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	_____________

�Unit Test Plan

				

Unit ID: IOT_build_query

UTP ID: IOT_BLD_QRY1

Version Control ID: IOT V1.1

Unit Function:

builds application text file records corresponding to a query transaction: one T02 plus one or more REF records.

Requirement to be validated:

Test Tools, Drivers, or Special Conditions:

Driver: outcqry.cpp

Input Data:

Tracking Number

Snapshot Query Type

Snapshot view

Snapshot Query Parameters

Overnight Flag

CDROM Flag

File Transfer Flag

Media Type

Message Format

Message Compression

Expected Outcome:

T02 plus one or more REF records are generated

Test Procedure Steps:

fill data structures with input data

call iot_build_query

Analysis Procedures:

verify generated records are correct

�Unit Test Report

					

Unit ID: IOT_build_query

UTP ID: IOT_BLD_QRY1

Version Control ID: IOT V1.1

Test Seq Number: 1

Test Conductor: R.H. Goldfarb			Test Date: � TIME \@ "M/d/yy" �9/8/97�

Purpose of Test:

to verify that application text file records corresponding to a properly constructed snapshot query are generated

Actual Results:

T01, T02, and REF records were generated

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: IOT_build_query

UTP ID: IOT_BLD_QRY2

Version Control ID: IOT V1.2.1

Unit Function:

builds application text file records corresponding to a query transaction: one T02 plus one or more REF records.

Requirement to be validated:

generate inspection report query

Test Tools, Drivers, or Special Conditions:

Driver: outcqry.cpp

Input Data:

Tracking Number

Inspection report Query Parameters

Overnight Flag

CDROM Flag

File Transfer Flag

Media Type

Message Format

Message Compression

Expected Outcome:

T02 plus one or more REF records are generated

Test Procedure Steps:

fill data structures with input data

call iot_build_query

Analysis Procedures:

verify generated records are correct

�Unit Test Report

					

Unit ID: IOT_build_query

UTP ID: IOT_BLD_QRY2

Version Control ID: IOT V1.2.1

Test Seq Number: 1

Test Conductor: R.H. Goldfarb			Test Date: 8/27/97

Purpose of Test:

to verify that application text file records corresponding to a properly constructed inspection report query are generated

Actual Results:

T01, T02, and REF records were generated

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: IOT_build_snapshot

UTP ID: IOT_BLD_SNAP1

Version Control ID: IOT V1.1

Unit Function:

converts snapshot data in internal data structures to application text file records corresponding to a snapshot transaction: one T02 plus one CS1 plus one or more TC2, C35, CFO, CSO, CP1, and CPJ records.

Requirement to be validated:

Test Tools, Drivers, or Special Conditions:

Test Driver: outcsnap.cpp

Input Data:

DB user

DB password

DB host

Snapshot Query Type

Snapshot view

Snapshot Query Parameters

Message Format

Message Compression Type

Expected Outcome:

T02, CS1, TC2, C35, CFO, CSO, CP1, & CPJ carrier snapshot records are generated

Test Procedure Steps:

log onto CVIEW DB

Build and execute snapshot query

fill data structures with snapshot and other input data

call iot_build_snapshot

Analysis Procedures:

verify generated records are correct

�Unit Test Report

					

Unit ID: IOT_build_snapshot

UTP ID: IOT_BLD_SNAP1

Version Control ID: IOT V1.1

Test Seq Number: 1

Test Conductor: R.H. Goldfarb			Test Date: � TIME \@ "M/d/yy" �9/8/97�

Purpose of Test:

to verify that application text file records corresponding to a properly constructed snapshot are generated

Actual Results:

application text file records corresponding to a carrier snapshot transaction were generated

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: IOT_build_subscription_req

UTP ID: IOT_BLD_SUBRQ1

Version Control ID: IOT V1.1

Unit Function:

builds application text file records corresponding to a subscription request transaction: one T02 plus one SL1 plus or more SE1 and REF records.

Requirement to be validated:

Test Tools, Drivers, or Special Conditions:

Test Driver: outsubreq.cpp

Input Data:

Subscription Request ID

Subscription Event(s)

Subscription Event Type(s)

Subscription Process Interval

Snapshot Query Type

Snapshot view

Snapshot Query Parameters

Message Compression

Expected Outcome:

T02, SL1, SE1, & REF records are generated

Test Procedure Steps:

fill data structures with input data

call iot_build_subscription_req

Analysis Procedures:

verify generated records are correct

�Unit Test Report

					

Unit ID: IOT_build_subscription_req

UTP ID: IOT_BLD_SUBRQ1

Version Control ID: IOT V1.1			

Test Seq Number: 1

Test Conductor: R.H. Goldfarb			Test Date: � TIME \@ "M/d/yy" �9/8/97�

Purpose of Test:

to verify that application text file records corresponding to a properly constructed subscription request are generated

Actual Results:

application text file records corresponding to a subscription request transaction were generated

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: iot_build_T01_vline

UTP ID: IOT_BLD_T01_1

Version Control ID: IOT V1.1

Unit Function:

builds a T01 application text file record, which contains interchange data required for generation of EDI message.

Requirement to be validated:

Test Tools, Drivers, or Special Conditions:

Test Driver: outcqry.cpp

Input Data:

Transaction type

Trading Partner ID

Purpose Code

Reference ID

Date

Time

Time Code

Prior Reference ID

Sender Last Name

Sender First Name

Sender Middle Name

Sender Organization

Expected Outcome:

properly formatted T01 record will be generated

Test Procedure Steps:

fill data structures with input data

call iot_build_T01_vline

Analysis Procedures:

examine record generated and verify it is correct

�Unit Test Report

					

Unit ID: iot_build_T01_vline

UTP ID: IOT_BLD_T01_1

Version Control ID: IOT V1.1

Test Seq Number: 1

Test Conductor: R.H. Goldfarb			Test Date: � TIME \@ "M/d/yy" �9/8/97�

Purpose of Test:

to verify that a properly constructed T01 application text file record is generated

Actual Results:

a T01 application text file record is generated from interchange input data

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: iot_build_T02_vline

UTP ID: IOT_BLD_T02_5

Version Control ID: IOT V1.2.2

Unit Function:

builds a T02 application text file record, which contains entity, tracking numbers, query, view, and other information associated with a transaction

Requirement to be validated:

build T02 record for inspection report

Test Tools, Drivers, or Special Conditions:

Test Driver: out_ir.cpp

Input Data:

Inspection report Data

Message Format = Application Text File

Expected Outcome:

T02 record formatted for an inspection report will be generated

Test Procedure Steps:

extract inspection report from SAFER db

call iot_build_T02_vline for inspection report

Analysis Procedures:

examine record generated and verify it is correct

�Unit Test Report

					

Unit ID: iot_build_T02_vline

UTP ID: IOT_BLD_T02_5

Version Control ID: IOT V1.2.2

Test Seq Number: 1

Test Conductor: R.H. Goldfarb			Test Date: 8/27/97

Purpose of Test:

to verify that a T02 application text file record for an inspection report transaction is generated

Actual Results:

a T02 application text file record with an entity=IP (inspection report) is generated

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: iot_build_T02_vline

UTP ID: IOT_BLD_T02_1

Version Control ID: IOT V1.1

Unit Function:

builds a T02 application text file record, which contains entity, tracking numbers, query, view, and other information associated with a transaction

Requirement to be validated:

Test Tools, Drivers, or Special Conditions:

Test Driver: outcsnap.cpp

Input Data:

Entity

Tracking Number

(Prior) Subscription List

View

Expected Outcome:

T02 record formatted for a snapshot transaction will be generated

Test Procedure Steps:

fill data structures with input data

call iot_build_T02_vline for snapshot transaction

Analysis Procedures:

examine record generated and verify it is correct

�Unit Test Report

					

Unit ID: iot_build_T02_vline

UTP ID: IOT_BLD_T02_1

Version Control ID: IOT V1.1

Test Seq Number: 1

Test Conductor: R.H. Goldfarb			Test Date: � TIME \@ "M/d/yy" �9/8/97�

Purpose of Test:

to verify that a T02 application text file record for a carrier snapshot transaction is generated

Actual Results:

a T02 application text file record for a carrier snapshot transaction is generated

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: iot_build_T02_vline

UTP ID: IOT_BLD_T02_2

Version Control ID: IOT V1.1

Unit Function:

builds a T02 application text file record, which contains entity, tracking numbers, query, view, and other information associated with a transaction

Requirement to be validated:

Test Tools, Drivers, or Special Conditions:

Test Driver: outcqry.cpp

Input Data:

Entity

Tracking Number

Query

View

Overnight Flag

Cost Estimate Flag

File Transfer Flag

CD ROM Flag

Expected Outcome:

T02 record formatted for a query transaction will be generated

Test Procedure Steps:

fill data structures with input data

call iot_build_T02_vline for query transaction

Analysis Procedures:

examine record generated and verify it is correct

�Unit Test Report

					

Unit ID: iot_build_T02_vline

UTP ID: IOT_BLD_T02_2

Version Control ID: IOT V1.1

Test Seq Number: 1

Test Conductor: R.H. Goldfarb			Test Date: � TIME \@ "M/d/yy" �9/8/97�

Purpose of Test:

to verify that a T02 application text file record for a carrier snapshot query transaction is generated

Actual Results:

a T02 application text file record for a carrier snapshot query transaction is generated

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: iot_build_T02_vline

UTP ID: IOT_BLD_T02_3

Version Control ID: IOT V1.1

Unit Function:

builds a T02 application text file record, which contains entity, tracking numbers, query, view, and other information associated with a transaction

Requirement to be validated:

Test Tools, Drivers, or Special Conditions:

Test Driver: outsubreq.cpp

Input Data:

Entity

Tracking Number

Query

View

Status Report Flag

Baseline Data Flag

Expected Outcome:

T02 record formatted for a subscription request transaction will be generated

Test Procedure Steps:

fill data structures with input data

call iot_build_T02_vline for subscription request transaction

Analysis Procedures:

examine record generated and verify it is correct

�Unit Test Report

					

Unit ID: iot_build_T02_vline

UTP ID: IOT_BLD_T02_3

Version Control ID: IOT V1.1

Test Seq Number: 1

Test Conductor: R.H. Goldfarb			Test Date: � TIME \@ "M/d/yy" �9/8/97�

Purpose of Test:

to verify that a T02 application text file record for a subscription request transaction is generated

Actual Results:

a T02 application text file record for a subscription request transaction is generated

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: iot_build_T02_vline

UTP ID: IOT_BLD_T02_4

Version Control ID: IOT V1.1

Unit Function:

builds a T02 application text file record, which contains entity, tracking numbers, query, view, and other information associated with a transaction

Requirement to be validated:

Test Tools, Drivers, or Special Conditions:

Test Driver: gen_err_msg.cpp

Input Data:

Entity

Tracking Number

Expected Outcome:

T02 record formatted for an error response transaction will be generated

Test Procedure Steps:

fill data structures with input data

call iot_build_T02_vline for error response transaction

Analysis Procedures:

examine record generated and verify it is correct

�Unit Test Report

					

Unit ID: iot_build_T02_vline

UTP ID: IOT_BLD_T02_4

Version Control ID: IOT V1.1

Test Seq Number: 1

Test Conductor: R.H. Goldfarb			Test Date: � TIME \@ "M/d/yy" �9/8/97�

Purpose of Test:

to verify that a T02 application text file record for an error response transaction is generated

Actual Results:

a T02 application text file record for an error response transaction is generated

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: iot_build_TC2_vrecord

UTP ID: IOT_BLD_TC2_1

Version Control ID: IOT V1.1

Unit Function:

converts carrier commodity data (hazmat & non hazmat) contained in a CVIEW internal snapshot data structure into a variable length application text file record

Requirement to be validated:

Test Tools, Drivers, or Special Conditions:

Test Driver: outcsnap.cpp

Input Data:

carrier snapshot with multiple carrier commodity values set, snapshot view

Expected Outcome:

a properly formatted TC2 application text file record is generated for each commodity type set

Test Procedure Steps:

fill data structures with carrier snapshot data

call iot_build_TC2_vrecord for each commodity field set in snapshot

Analysis Procedures:

examine resulting TC2 records and verify it is correct

�Unit Test Report

					

Unit ID: iot_build_TC2_vrecord

UTP ID: IOT_BLD_TC2_1

Version Control ID: IOT V1.1

Test Seq Number: 1

Test Conductor: R.H. Goldfarb			Test Date: � TIME \@ "M/d/yy" �9/8/97�

Purpose of Test:

to verify that TC2 application text file snapshot commodity records containing appropriate commodity code values are generated from the snapshot input data

Actual Results:

TC2 commodity records are generated from the snapshot data

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: IOT_close_translator

UTP ID: IOT_CLS_TRN1

Version Control ID: IOT V1.1

Unit Function:

releases private IOT management memory allocated during initialization and writes Reference ID sequence number of the next outgoing message to win.ini file. If the IOT log file is open, a “closing log file” entry is written and the log file is closed.

Requirement to be validated:

Test Tools, Drivers, or Special Conditions:

Test Driver: outcqry.cpp

Input Data:

section in win.ini file

win.ini file containing reference ID sequence number

Expected Outcome:

allocated memory is freed

reference ID sequence number of next outgoing message is written to win.ini file

closing log entry is written to log file & log file is closed

private management memory is released

Test Procedure Steps:

initialize translator (IOT_initialize_translator)

manually delete Reference ID sequence number in win.ini file

call IOT_close_translator

Analysis Procedures:

using debugger, verify that private memory is released

examine win.ini and verify that next sequence number is same as originally in the file

examine IOT log file and verify that “closing Log File” entry exists

�Unit Test Report

					

Unit ID: IOT_close_translator

UTP ID: IOT_CLS_TRN1

Version Control ID: IOT V1.1

Test Seq Number: 1

Test Conductor: R.H. Goldfarb			Test Date: � TIME \@ "M/d/yy" �9/8/97�

Purpose of Test:

to verify that the IOT_close_transaction frees allocated memory, closes the IOT log file, and writes the reference id sequence number for the next outgoing message to the win.ini file

Actual Results:

the IOT_close_transaction function worked correctly

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: iot_do_translate_inb

UTP ID: IOT_DO_TRANS_INB1

Version Control ID: IOT V1.1

Unit Function:

invokes COTS EDI translator software to process inbound EDI messages

Requirement to be validated:

Test Tools, Drivers, or Special Conditions:

Test Driver: incmsg.cpp

Input Data:

EDI carrier snapshot message

Expected Outcome:

application text file formatted carrier snapshot records are generated

Test Procedure Steps:

call iot_do_translate_inb with EDI carrier snapshot message

Analysis Procedures:

examine application text file carrier snapshot records and verify that they are correct

�Unit Test Report

					

Unit ID: iot_do_translate_inb

UTP ID: IOT_DO_TRANS_INB1

Version Control ID: IOT V1.1

Test Seq Number: 1

Test Conductor: R.H. Goldfarb			Test Date: � TIME \@ "M/d/yy" �9/8/97�

Purpose of Test:

to verify that the EDI input message is correctly translated to an application text file

Actual Results:

the EDI carrier snapshot message was correctly translated to application text file records

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________�Unit Test Plan

				

Unit ID: iot_do_translate_inb

UTP ID: IOT_DO_TRANS_INB2

Version Control ID: IOT V1.1

Unit Function:

invokes COTS EDI translator software to process inbound EDI messages

Requirement to be validated:

Test Tools, Drivers, or Special Conditions:

Test Driver: incmsg.cpp

Input Data:

EDI carrier snapshot query message

Expected Outcome:

application text file formatted carrier snapshot query records are generated

Test Procedure Steps:

call iot_do_translate_inb with EDI carrier snapshot query message

Analysis Procedures:

examine application text file carrier snapshot query records and verify that they are correct

�Unit Test Report

					

Unit ID: iot_do_translate_inb

UTP ID: IOT_DO_TRANS_INB2

Version Control ID: IOT V1.1	

Test Seq Number: 1

Test Conductor: R.H. Goldfarb			Test Date: � TIME \@ "M/d/yy" �9/8/97�

Purpose of Test:

to verify that the EDI input message is correctly translated to an application text file

Actual Results:

the EDI carrier snapshot query message was correctly translated to application text file records

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: iot_do_translate_inb

UTP ID: IOT_DO_TRANS_INB3

Version Control ID: IOT V1.1

Unit Function:

invokes COTS EDI translator software to process inbound EDI messages

Requirement to be validated:

Test Tools, Drivers, or Special Conditions:

Test Driver: incmsg.cpp

Input Data:

EDI subscription request message

Expected Outcome:

application text file formatted subscription request records are generated

Test Procedure Steps:

call iot_do_translate_inb with EDI subscription request message

Analysis Procedures:

examine application text file subscription request records and verify that they are correct

�Unit Test Report

					

Unit ID: iot_do_translate_inb

UTP ID: IOT_DO_TRANS_INB3

Version Control ID: IOT V1.1	

Test Seq Number: 1

Test Conductor: R.H. Goldfarb			Test Date: � TIME \@ "M/d/yy" �9/8/97�

Purpose of Test:

to verify that the EDI input message is correctly translated to an application text file

Actual Results:

the EDI subscription request message was correctly translated to application text file records

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: iot_do_translate_inb

UTP ID: IOT_DO_TRANS_INB4

Version Control ID: IOT V1.1

Unit Function:

invokes COTS EDI translator software to process inbound EDI messages

Requirement to be validated:

Test Tools, Drivers, or Special Conditions:

Test Driver: incmsg.cpp

Input Data:

EDI error response message

Expected Outcome:

application text file formatted error response records are generated

Test Procedure Steps:

call iot_do_translate_inb with EDI error response message

Analysis Procedures:

examine application text file error response records and verify that they are correct

�Unit Test Report

					

Unit ID: iot_do_translate_inb

UTP ID: IOT_DO_TRANS_INB4

Version Control ID: IOT V1.1			

Test Seq Number: 1

Test Conductor: R.H. Goldfarb			Test Date: � TIME \@ "M/d/yy" �9/8/97�

Purpose of Test:

to verify that the EDI input message is correctly translated to an application text file

Actual Results:

the EDI error response message was correctly translated to application text file records

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: iot_do_translate_outb

UTP ID: IOT_DO_TRANS_OUTB1

Version Control ID: IOT V1.1

Unit Function:

invokes COTS EDI translator software to generate an outbound EDI message

Requirement to be validated:

Test Tools, Drivers, or Special Conditions:

Test Driver: incmsgo.cpp

Input Data:

EDI carrier snapshot query message

Expected Outcome:

an EDI formatted carrier snapshot message is generated

Test Procedure Steps:

process query message

call iot_do_translate_outb with application text file containing carrier snapshot records

Analysis Procedures:

compare generated EDI message to a known correct equivalent message

�Unit Test Report

					

Unit ID: iot_do_translate_outb

UTP ID: IOT_DO_TRANS_OUTB1

Version Control ID: IOT V1.1

Test Seq Number: 1

Test Conductor: R.H. Goldfarb			Test Date: � TIME \@ "M/d/yy" �9/8/97�

Purpose of Test:

to verify that a correct EDI carrier snapshot message is generated

Actual Results:

a correct EDI carrier snapshot message is generated

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: iot_do_translate_outb

UTP ID: IOT_DO_TRANS_OUTB2

Version Control ID: IOT V1.1

Unit Function:

invokes COTS EDI translator software to generate an outbound EDI message

Requirement to be validated:

Test Tools, Drivers, or Special Conditions:

Test Driver: outcqry.cpp

Input Data:

carrier snapshot query data (query number, query view, query parameters)

Expected Outcome:

an EDI formatted carrier snapshot query message is generated

Test Procedure Steps:

call iot_do_translate_outb with application text file containing carrier snapshot query records

Analysis Procedures:

compare generated EDI message to a known correct equivalent message

�Unit Test Report

					

Unit ID: iot_do_translate_outb

UTP ID: IOT_DO_TRANS_OUTB2

Version Control ID: IOT V1.1	

Test Seq Number: 1

Test Conductor: R.H. Goldfarb			Test Date: � TIME \@ "M/d/yy" �9/8/97�

Purpose of Test:

to verify that a correct EDI carrier snapshot query message is generated

Actual Results:

a correct EDI carrier snapshot query message is generated

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: iot_do_translate_outb

UTP ID: IOT_DO_TRANS_OUTB3

Version Control ID: IOT V1.1

Unit Function:

invokes COTS EDI translator software to generate an outbound EDI message

Requirement to be validated:

Test Tools, Drivers, or Special Conditions:

Test Driver: outsubreq.cpp

Input Data:

application text file containing subscription request records

Expected Outcome:

an EDI formatted subscription request message is generated

Test Procedure Steps:

call iot_do_translate_outb with application text file containing subscription request records

Analysis Procedures:

compare generated EDI message to a known correct equivalent message

�Unit Test Report

					

Unit ID: iot_do_translate_outb

UTP ID: IOT_DO_TRANS_OUTB3

Version Control ID: IOT V1.1

Test Seq Number: 1

Test Conductor: R.H. Goldfarb			Test Date: � TIME \@ "M/d/yy" �9/8/97�

Purpose of Test:

to verify that a correct EDI subscription request message is generated

Actual Results:

a correct EDI subscription request message is generated

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: iot_do_translate_outb

UTP ID: IOT_DO_TRANS_OUTB4

Version Control ID: IOT V1.1

Unit Function:

invokes COTS EDI translator software to generate an outbound EDI message

Requirement to be validated:

Test Tools, Drivers, or Special Conditions:

Test Driver: gen_err_msg.cpp

Input Data:

internal error response data

Expected Outcome:

an EDI formatted error response message is generated

Test Procedure Steps:

call iot_do_translate_outb with application text file containing error response records

Analysis Procedures:

compare generated EDI message to a known correct equivalent message

�Unit Test Report

					

Unit ID: iot_do_translate_outb

UTP ID: IOT_DO_TRANS_OUTB4

Version Control ID: IOT V1.1

Test Seq Number: 1

Test Conductor: R.H. Goldfarb			Test Date: � TIME \@ "M/d/yy" �9/8/97�

Purpose of Test:

to verify that a correct EDI error response message is generated

Actual Results:

a correct EDI error response message is generated

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: iot_fill_structures

UTP ID: IOT_FILL_STRCT5

Version Control ID: IOT V1.2.2

Unit Function:

Moves data extracted from an application text file generated from an incoming message and stores it in transaction specific packet header, update data, data header, request header, and request structures.

Requirement to be validated:

inspection report update processing is invoked

Test Tools, Drivers, or Special Conditions:

Test Driver: incmsg.cpp

Input Data:

non EDI inspection report message

inspection report archive

Expected Outcome:

iot_process_inspection report is invoked

Test Procedure Steps:

invoke_IOT_translate_incoming_message to process inspection report update message

invoke IOT_get_transaction to initiate copying of message data to data structures

Analysis Procedures:

using debugger, verify that iot_process_inspection_reports is called

�Unit Test Report

					

Unit ID: iot_fill_structures

UTP ID: IOT_FILL_STRCT5

Version Control ID: IOT V1.2.2

Test Seq Number:

Test Conductor: R.H. Goldfarb			Test Date: 8/27/97

Purpose of Test:

to verify that iot inspection report processing is invoked when an inspection report message is received

Actual Results:

iot_process_inspection_reports is called

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: iot_fill_structures

UTP ID: IOT_FILL_STRCT1

Version Control ID: IOT V1.1

Unit Function:

Moves data extracted from an application text file generated from an incoming message and stores it in transaction specific packet header, update data, data header, request header, and request structures.

Requirement to be validated:

Test Tools, Drivers, or Special Conditions:

Test Driver: incmsg.cpp

Input Data:

EDI carrier snapshot message

Expected Outcome:

target data structures will contain data elements from application text file generated from incoming EDI message

Test Procedure Steps:

invoke_IOT_translate_incoming_message to process EDI carrier snapshot message with EDI translator

invoke IOT_get_transaction to initiate copying of message data to data structures

Analysis Procedures:

using debugger, examine data elements in packet header, update data, data header, request header, and request structures and verify that they are correct

�Unit Test Report

					

Unit ID: iot_fill_structures

UTP ID: IOT_FILL_STRCT1

Version Control ID: IOT V1.1

Test Seq Number:

Test Conductor: R.H. Goldfarb			Test Date: � TIME \@ "M/d/yy" �9/8/97�

Purpose of Test:

to verify that data from input EDI message is correctly stored in internal data structures

Actual Results:

packet header, data header, update data, request, request header contain data from input message

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: iot_fill_structures

UTP ID: IOT_FILL_STRCT2

Version Control ID: IOT V1.1

Unit Function:

Moves data extracted from an application text file generated from an incoming message and stores it in transaction specific packet header, update data, data header, request header, and request structures.

Requirement to be validated:

Test Tools, Drivers, or Special Conditions:

Test Driver: incmsg.cpp

Input Data:

EDI carrier snapshot query message

Expected Outcome:

target data structures will contain data elements from application text file generated from incoming EDI message

Test Procedure Steps:

invoke_IOT_translate_incoming_message to process EDI carrier snapshot query message with EDI translator

invoke IOT_get_transaction to initiate copying of message data to data structures

Analysis Procedures:

using debugger, examine data elements in packet header, update data, data header, request header, and request structures and verify that they are correct

�Unit Test Report

					

Unit ID: iot_fill_structures

UTP ID: IOT_FILL_STRCT2

Version Control ID: IOT V1.1

Test Seq Number:

Test Conductor: R.H. Goldfarb			Test Date: � TIME \@ "M/d/yy" �9/8/97�

Purpose of Test:

to verify that data from input EDI message is correctly stored in internal data structures

Actual Results:

packet header, data header, update data, request, request header contain data from input message

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: iot_fill_structures

UTP ID: IOT_FILL_STRCT3

Version Control ID: IOT V1.1

Unit Function:

Moves data extracted from an application text file generated from an incoming message and stores it in transaction specific packet header, update data, data header, request header, and request structures.

Requirement to be validated:

Test Tools, Drivers, or Special Conditions:

Test Driver: incmsg.cpp

Input Data:

EDI subscription request message

Expected Outcome:

target data structures will contain data elements from application text file generated from incoming EDI message

Test Procedure Steps:

invoke_IOT_translate_incoming_message to process EDI subscription request message with EDI translator

invoke IOT_get_transaction to initiate copying of message data to data structures

Analysis Procedures:

using debugger, examine data elements in packet header, update data, data header, request header, and request structures and verify that they are correct

�Unit Test Report

					

Unit ID: iot_fill_structures

UTP ID: IOT_FILL_STRCT3

Version Control ID: IOT V1.1

Test Seq Number:

Test Conductor: R.H. Goldfarb			Test Date: � TIME \@ "M/d/yy" �9/8/97�

Purpose of Test:

to verify that data from input EDI message is correctly stored in internal data structures

Actual Results:

packet header, data header, update data, request, request header contain data from input message

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: iot_fill_structures

UTP ID: IOT_FILL_STRCT4

Version Control ID: IOT V1.1

Unit Function:

Moves data extracted from an application text file generated from an incoming message and stores it in transaction specific packet header, update data, data header, request header, and request structures.

Requirement to be validated:

Test Tools, Drivers, or Special Conditions:

Test Driver: incmsg.cpp

Input Data:

EDI error response message

Expected Outcome:

target data structures will contain data elements from application text file generated from incoming EDI message

Test Procedure Steps:

invoke_IOT_translate_incoming_message to process EDI error response message with EDI translator

invoke IOT_get_transaction to initiate copying of message data to data structures

Analysis Procedures:

using debugger, examine data elements in packet header, update data, data header, request header, and request structures and verify that they are correct

�Unit Test Report

					

Unit ID: iot_fill_structures

UTP ID: IOT_FILL_STRCT4

Version Control ID: IOT V1.1

Test Seq Number:

Test Conductor: R.H. Goldfarb			Test Date: � TIME \@ "M/d/yy" �9/8/97�

Purpose of Test:

to verify that data from input EDI message is correctly stored in internal data structures

Actual Results:

packet header, data header, update data, request, request header contain data from input message

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: iot_is_field_in_view

UTP ID: IOT_FLD_IN_VW1

Version Control ID: IOT V1.1

Unit Function:

specifies whether the specified snapshot field is in the specified view. The address of the snapshot, the address of the field, the view, and the type of snapshot (entity) are specified.

Requirement to be validated:

Test Tools, Drivers, or Special Conditions:

Test Driver: outcsnap.cpp

Input Data:

carrier snapshot data, including a snapshot view

Expected Outcome:

all fields in the snapshot are correctly identified as being included or excluded from the specified view

Test Procedure Steps:

fill internal data structures with snapshot data

generate non EDI carrier snapshot message (IOT_generate_outgoing_messsage)

Analysis Procedures:

using the debugger, verify that all fields in the snapshot are correctly identified as being included or excluded from the specified view

�Unit Test Report

					

Unit ID: iot_is_field_in_view

UTP ID: IOT_FLD_IN_VW1

Version Control ID: IOT V1.1

Test Seq Number: 1

Test Conductor: R.H. Goldfarb			Test Date: � TIME \@ "M/d/yy" �9/8/97�

Purpose of Test:

to verify that fields in snapshot data are correctly identified as being included or not included in the specified view

Actual Results:

snapshot data fields are correctly identified as included

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________�Unit Test Plan

				

Unit ID: IOT_finish_outgoing_message

UTP ID: IOT_FNSH_MSG1

Version Control ID: IOT V1.1

Unit Function:

invokes COTS EDI translator to generate outgoing EDI message from application text file, and/or compress resulting outgoing EDI message file.

Requirement to be validated:

Test Tools, Drivers, or Special Conditions:

Test Driver: multicsnapout.cpp

Input Data:

carrier snapshot, snapshot view

Expected Outcome:

properly formatted EDI carrier snapshot message will be written to disk

Test Procedure Steps:

invoke IOT_finish_outgoing_message

Analysis Procedures:

examine resulting EDI message and verify that it is correct

�Unit Test Report

					

Unit ID: IOT_finish_outgoing_message

UTP ID: IOT_FNSH_MSG1

Version Control ID: IOT V1.1

Test Seq Number: 1

Test Conductor: R.H. Goldfarb			Test Date: � TIME \@ "M/d/yy" �9/8/97�

Purpose of Test:

to verify that a correct EDI snapshot update message is generated

Actual Results:

a valid EDI carrier snapshot message is generated

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: IOT_finish_outgoing_message

UTP ID: IOT_FNSH_MSG2

Version Control ID: IOT V1.1

Unit Function:

invokes COTS EDI translator to generate outgoing EDI message from application text file, and/or compress resulting outgoing EDI message file.

Requirement to be validated:

Test Tools, Drivers, or Special Conditions:

Test Driver: outcqry.cpp

Input Data:

carrier snapshot query data

Expected Outcome:

properly formatted EDI carrier snapshot query message will be written to disk

Test Procedure Steps:

invoke IOT_finish_outgoing_message

Analysis Procedures:

examine resulting EDI message and verify that it is correct

�Unit Test Report

					

Unit ID: IOT_finish_outgoing_message

UTP ID: IOT_FNSH_MSG2

Version Control ID: IOT V1.1

Test Seq Number: 1

Test Conductor: R.H. Goldfarb			Test Date: � TIME \@ "M/d/yy" �9/8/97�

Purpose of Test:

to verify that a correct EDI snapshot query message is generated

Actual Results:

a valid EDI carrier snapshot query message is generated

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: IOT_finish_outgoing_message

UTP ID: IOT_FNSH_MSG3

Version Control ID: IOT V1.1

Unit Function:

invokes COTS EDI translator to generate outgoing EDI message from application text file, and/or compress resulting outgoing EDI message file.

Requirement to be validated:

Test Tools, Drivers, or Special Conditions:

Test Driver: outsubreq.cpp

Input Data:

subscription request data in subscription_req data structure

Expected Outcome:

properly formatted EDI subscription request message will be written to disk

Test Procedure Steps:

invoke IOT_finish_outgoing_message

Analysis Procedures:

examine resulting EDI message and verify that it is correct

�Unit Test Report

					

Unit ID: IOT_finish_outgoing_message

UTP ID: IOT_FNSH_MSG3

Version Control ID: IOT V1.1

Test Seq Number: 1

Test Conductor: R.H. Goldfarb			Test Date: � TIME \@ "M/d/yy" �9/8/97�

Purpose of Test:

to verify that a correct EDI subscription request message is generated

Actual Results:

a valid EDI subscription request message is generated

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: IOT_finish_outgoing_message

UTP ID: IOT_FNSH_MSG4

Version Control ID: IOT V1.1

Unit Function:

invokes COTS EDI translator to generate outgoing EDI message from application text file, and/or compress resulting outgoing EDI message file.

Requirement to be validated:

Test Tools, Drivers, or Special Conditions:

Test Driver: outcsnap.cpp

Input Data:

carrier snapshot, snapshot view

Expected Outcome:

a properly formatted compressed EDI carrier snapshot zip archive file will be written to disk

Test Procedure Steps:

invoke IOT_finish_outgoing_message

Analysis Procedures:

decompress generated zip archive using WINZIP and verify that it is identical to uncompressed EDI message

�Unit Test Report

					

Unit ID: IOT_finish_outgoing_message

UTP ID: IOT_FNSH_MSG4

Version Control ID: IOT V1.1

Test Seq Number: 1

Test Conductor: R.H. Goldfarb			Test Date: � TIME \@ "M/d/yy" �9/8/97�

Purpose of Test:

to verify that a correct compressed EDI snapshot message is generated

Actual Results:

a valid compressed EDI carrier snapshot message is generated

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: IOT_finish_outgoing_message

UTP ID: IOT_FNSH_MSG5

Version Control ID: IOT V1.1

Unit Function:

invokes COTS EDI translator to generate outgoing EDI message from application text file, and/or compress resulting outgoing EDI message file.

Requirement to be validated:

Test Tools, Drivers, or Special Conditions:

Test Driver: outcqry.cpp

Input Data:

carrier snapshot query data: (query type, view, query parameters)

Expected Outcome:

a properly formatted compressed EDI carrier snapshot query zip archive file will be written to disk

Test Procedure Steps:

invoke IOT_finish_outgoing_message

Analysis Procedures:

decompress generated zip archive using WINZIP and verify that it is identical to the uncompressed EDI message

�Unit Test Report

					

Unit ID: IOT_finish_outgoing_message

UTP ID: IOT_FNSH_MSG5

Version Control ID: IOT V1.1

Test Seq Number: 1

Test Conductor: R.H. Goldfarb			Test Date: � TIME \@ "M/d/yy" �9/8/97�

Purpose of Test:

to verify that a correct compressed EDI snapshot query message is generated

Actual Results:

a valid compressed EDI carrier snapshot query message is generated

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: IOT_finish_outgoing_message

UTP ID: IOT_FNSH_MSG6

Version Control ID: IOT V1.1

Unit Function:

invokes COTS EDI translator to generate outgoing EDI message from application text file, and/or compress resulting outgoing EDI message file.

Requirement to be validated:

Test Tools, Drivers, or Special Conditions:

Test Driver: outsubreq.cpp

Input Data:

subscription request data : subscription request ID, subscription events, subscription request process type, query number, query parameters

Expected Outcome:

a properly formatted compressed EDI subscription request zip archive file will be written to disk

Test Procedure Steps:

invoke IOT_finish_outgoing_message

Analysis Procedures:

decompress generated zip archive using WINZIP and verify that it is identical to uncompressed EDI message

�Unit Test Report

					

Unit ID: IOT_finish_outgoing_message

UTP ID: IOT_FNSH_MSG6

Version Control ID: IOT V1.1

Test Seq Number: 1

Test Conductor: R.H. Goldfarb			Test Date: � TIME \@ "M/d/yy" �9/8/97�

Purpose of Test:

to verify that a correct compressed EDI subscription request message is generated

Actual Results:

A valid compressed EDI subscription request message is generated

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: IOT_finish_outgoing_message

UTP ID: IOT_FNSH_MSG7

Version Control ID: IOT V1.2.2

Unit Function:

invokes COTS EDI translator to generate outgoing EDI message from application text file, and/or compress resulting outgoing EDI message file.

Requirement to be validated:

build inspection report application text file

build inspection report archive containing extracted inspection report files and summary file

return path to inspection report archive and application text file

Test Tools, Drivers, or Special Conditions:

Test Driver: out_ir.cpp

Input Data:

inspection report data

Expected Outcome:

a zip archive containing the extracted inspection report file plus the IOT generated summary file is generated. Iot_build_ir_app_file is called to build the non EDI message file that identifies the inspection report archive to the recipient IOT.

Test Procedure Steps:

invoke IOT_finish_outgoing_message

Analysis Procedures:

examine resulting zip archive file and verify that it is correct

verify that iot_build_IR_app_file is called with the appropriate arguments

�Unit Test Report

					

Unit ID: IOT_finish_outgoing_message

UTP ID: IOT_FNSH_MSG7

Version Control ID: IOT V1.2.2

Test Seq Number: 1

Test Conductor: R.H. Goldfarb			Test Date: 8/27/97

Purpose of Test:

to verify that a correct inspection report archive is generated

Actual Results:

a zipped archive file containing the inspection report file and summary file is generated. iot_build_IR_app_file is called to build the inspection report message body file. The path to the zip archive and message body file are returned to the caller

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: IOT_generate_carrier_snapshot_vrecords

UTP ID: IOT_GEN_CSNAP1

Version Control ID: IOT V1.1

Unit Function:

converts snapshot data in internal data structures to application text file records and writes the records to the application text file

Requirement to be validated:

Test Tools, Drivers, or Special Conditions:

Test Driver: outcsnap.cpp

Input Data:

Snapshot Data

Snapshot view

Message Format

Message Compression Type

Expected Outcome:

CS1, TC2, C35, CFO, CSO, CP1, & CPJ carrier snapshot records are generated

Test Procedure Steps:

fill data structures with snapshot and other input data

call iot_generate_carrier_snapshot_vrecords

Analysis Procedures:

verify generated records are correctly added to the application text file

�Unit Test Report

					

Unit ID: IOT_generate_carrier_snapshot_vrecords

UTP ID: IOT_GEN_CSNAP1

Version Control ID: IOT V1.1

Test Seq Number: 1

Test Conductor: R.H. Goldfarb			Test Date: � TIME \@ "M/d/yy" �9/8/97�

Purpose of Test:

to verify that the appropriate application text file records corresponding to a carrier snapshot are generated

Actual Results:

T01, T02, CS1, TC2, C35, CFO, CSO, CP1, nad CPJ records are generated from snapshot input data

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: IOT_generate_carrier_snapshot_vrecords

UTP ID: IOT_GEN_CSNAP1

Version Control ID: IOT V1.1

Unit Function:

converts snapshot data in internal data structures to application text file records and writes the records to the application text file

Requirement to be validated:

Test Tools, Drivers, or Special Conditions:

Test Driver: outcsnap.cpp

Input Data:

Snapshot Data

Snapshot view

Message Format

Message Compression Type

Expected Outcome:

CS1, TC2, C35, CFO, CSO, CP1, & CPJ carrier snapshot records are generated

Test Procedure Steps:

fill data structures with snapshot and other input data

call iot_generate_carrier_snapshot_vrecords

Analysis Procedures:

verify generated records are correctly added to the application text file

�Unit Test Report

					

Unit ID: IOT_generate_carrier_snapshot_vrecords

UTP ID: IOT_GEN_CSNAP1

Version Control ID: IOT V1.1

Test Seq Number: 1

Test Conductor: R.H. Goldfarb			Test Date: 5/7/97

Purpose of Test:

to verify that the appropriate application text file records corresponding to a carrier snapshot are generated

Actual Results:

T01, T02, CS1, TC2, C35, CFO, CSO, CP1, and CPJ records

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: IOT_generate_error_message

UTP ID: IOT_GEN_ERR_MSG1

Version Control ID: IOT V1.1

Unit Function:

builds an 824 EDI or non EDI error response compressed or uncompressed message from error data contained in internal data structures

Requirement to be validated:

Test Tools, Drivers, or Special Conditions:

Test Driver: gen_err_msg.cpp

Input Data:

non EDI query message with carrier ID not in carrier table

Expected Outcome:

a correctly formatted EDI 824 error response message representing a NO MATCH error will be generated

Test Procedure Steps:

fill data structures with input data

call IOT_generate_error_message

Analysis Procedures:

examine generated EDI error response message and verify that it is correct

�Unit Test Report

					

Unit ID: IOT_generate_error_message

UTP ID: IOT_GEN_ERR_MSG1

Version Control ID: IOT V1.1

Test Seq Number: 1

Test Conductor: R.H. Goldfarb			Test Date: � TIME \@ "M/d/yy" �9/8/97�

Purpose of Test:

to verify that a correct “NO MATCH” non EDI error response message is generated

Actual Results:

a valid “NO MATCH” error response message is generated

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: IOT_generate_error_message

UTP ID: IOT_GEN_ERR_MSG2

Version Control ID: IOT V1.1

Unit Function:

builds an 824 EDI or non EDI error response compressed or uncompressed message from error data contained in internal data structures

Requirement to be validated:

Test Tools, Drivers, or Special Conditions:

Test Driver: incmsge.cpp

Input Data:

non EDI query message with invalid query criteria

Expected Outcome:

a correctly formatted zip archive containing a non EDI error response message representing invalid query criteria will be generated

Test Procedure Steps:

process query message

call IOT_generate_error_message with zip compression

Analysis Procedures:

extract error response non EDI message using WINZIP and verify that it is correct

�Unit Test Report

					

Unit ID: IOT_generate_error_message

UTP ID: IOT_GEN_ERR_MSG2

Version Control ID: IOT V1.1

Test Seq Number: 1

Test Conductor: R.H. Goldfarb			Test Date: � TIME \@ "M/d/yy" �9/8/97�

Purpose of Test:

to verify that a correct “REJECT TRANSACTION” error response message is generated

Actual Results:

a valid “REJECT TRANSACTION” non EDI error response message is generated

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: iot_get_query_parm_no

UTP ID: IOT_GET_PARM_TXT3

Version Control ID: IOT V1.1

Unit Function:

converts internal SAFER_parm_no_t query parameter type value to EDI query parameter type text.

Requirement to be validated:

Test Tools, Drivers, or Special Conditions:

Test Driver: outcqry.cpp

Input Data:

carried id number

Expected Outcome:

correct query parameter type text code value is returned

Test Procedure Steps:

fill internal data structures with query data

invoke IOT_output_transaction to get query parameter type text

Analysis Procedures:

examine generated EDI query message file for correct query parameter text

�Unit Test Report

					

Unit ID: iot_get_query_parm_no

UTP ID: IOT_GET_PARM_TXT3

Version Control ID: IOT V1.1

Test Seq Number: 1

Test Conductor: R.H. Goldfarb			Test Date: 5/15/97

Purpose of Test:

to verify that the query parameter text code corresponding to a carrier id number query parameter is generated

Actual Results:

the query parameter text corresponding to a carrier ID number was generated

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: iot_get_query_parm_no

UTP ID: IOT_GET_PARM_TXT4

Version Control ID: IOT V1.2.1

Unit Function:

converts internal SAFER_parm_no_t query parameter type value to EDI query parameter type text.

Requirement to be validated:

Test Tools, Drivers, or Special Conditions:

Test Driver: outcqry.cpp

Input Data:

inspection report number

Expected Outcome:

correct query parameter type text code value is returned

Test Procedure Steps:

fill internal data structures with query data

invoke IOT_output_transaction to get query parameter type text

Analysis Procedures:

examine generated EDI query message file for correct query parameter text

�Unit Test Report

					

Unit ID: iot_get_query_parm_no

UTP ID: IOT_GET_PARM_TXT4

Version Control ID: IOT V1.2.1

Test Seq Number: 1

Test Conductor: R.H. Goldfarb			Test Date: 8/15/97

Purpose of Test:

to verify that the query parameter text code corresponding to a inspection report number query parameter is generated

Actual Results:

the query parameter text corresponding to a carrier ID number was generated

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: iot_get_query_type_text

UTP ID: IOT_GET_QRY_TXT5

Version Control ID: IOT V1.2.1

Unit Function:

converts internal SAFER_query_no_t query number to EDI query number code value text

Requirement to be validated:

Test Tools, Drivers, or Special Conditions:

Test Driver: outcqry.cpp

Input Data:

inspection report number

inspection report data type

EDI message format

Expected Outcome:

correct query code text is returned

Test Procedure Steps:

fill data structures with inspection report query data

generate EDI query message (IOT_generate_outgoing_message)

Analysis Procedures:

examine generated EDI query message and verify that query code text value is correct

�Unit Test Report

					

Unit ID: iot_get_query_type_text

UTP ID: IOT_GET_QRY_TXT5

Version Control ID: IOT V1.2.1

Test Seq Number: 1

Test Conductor: R.H. Goldfarb			Test Date: 8/20/97

Purpose of Test:

to verify that the internal query type value corresponding to an inspection report number query text code is returned

Actual Results:

the query type value representing an inspection report number query text value was produced

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

Unit Test Plan

				

Unit ID: iot_get_query_no

UTP ID: IOT_GET_QRY5

Version Control ID: IOT V1.2.2

Unit Function:

converts EDI query number code value to internal SAFER_query_no_t representation

Requirement to be validated:

Test Tools, Drivers, or Special Conditions:

Test Driver: incmsg.cpp

Input Data:

EDI inspection report number query message

Expected Outcome:

correct query no is returned

Test Procedure Steps:

translate EDI inspection report query message

convert query number via call to IOT_get_transaction

Analysis Procedures:

using the debugger, verify that query number returned is correct

�Unit Test Report

					

Unit ID: iot_get_query_no

UTP ID: IOT_GET_QRY5

Version Control ID: IOT V1.2.2

Test Seq Number: 1

Test Conductor: R.H. Goldfarb			Test Date: 8/20/97

Purpose of Test:

to verify that the internal query type corresponding to an inspection report number (Q300) query text code is produced

Actual Results:

the query type value representing an inspection report number query text code was returned

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

Unit Test Plan

				

Unit ID: iot_validate_data

UTP ID: IOT_VAL_DTA15

Version Control ID: IOT V1.2.1

Unit Function:

Based on the specified data type, the routine determines if the value of the data, represented by a character string, is valid. It calls the appropriate function used to convert the associated type of data from character string to internal representation to convert the data and determine if its value is correct.

Requirement to be validated:

Test Tools, Drivers, or Special Conditions:

Test Driver: incmsg.cpp

Input Data:

inspection report query EDI message with valid entity

Expected Outcome:

valid internal entity value is returned

Test Procedure Steps:

translate EDI message (IOT_translate_incoming_message)

extract entity from query transaction (IOT_get_transaction)

Analysis Procedures:

using the debugger, verify that valid data value is returned

�Unit Test Report

					

Unit ID: iot_validate_data

UTP ID: IOT_VAL_DTA15

Version Control ID: IOT V1.2.1

Test Seq Number: 1

Test Conductor: R.H. Goldfarb			Test Date: 8/21/97

Purpose of Test:

to verify that the specified text string representing an entity is converted to an internal entity value

Actual Results:

the specified text is converted to a valid entity value

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

Unit Test Plan

				

Unit ID: iot_validate_data

UTP ID: IOT_VAL_DTA16

Version Control ID: IOT V1.2.1

Unit Function:

Based on the specified data type, the routine determines if the value of the data, represented s a character string, is valid. It calls the appropriate function used to convert the associated type of data from character string to internal representation to convert the data and determine if its value is correct.

Requirement to be validated:

Test Tools, Drivers, or Special Conditions:

Test Driver: incmsg.cpp

Input Data:

inspection report query EDI message with invalid query number

Expected Outcome:

invalid query number data flag is returned

Test Procedure Steps:

translate EDI message (IOT_translate_incoming_message)

extract query number from query transaction (IOT_get_transaction)

Analysis Procedures:

using the debugger, verify that invalid data value is returned

�Unit Test Report

					

Unit ID: iot_validate_data

UTP ID: IOT_VAL_DTA16

Version Control ID: IOT V1.2.1

Test Seq Number: 1

Test Conductor: R.H. Goldfarb			Test Date: 8/21/97

Purpose of Test:

to verify that the specified text string representing an invalid query number is converted to an invalid query indicator value

Actual Results:

an invalid query number indicator is returned

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

Unit Test Plan

				

Unit ID: iot_validate_data

UTP ID: IOT_VAL_DTA17

Version Control ID: IOT V1.2.1

Unit Function:

Based on the specified data type, the routine determines if the value of the data, represented s a character string, is valid. It calls the appropriate function used to convert the associated type of data from character string to internal representation to convert the data and determine if its value is correct.

Requirement to be validated:

Test Tools, Drivers, or Special Conditions:

Test Driver: incmsg.cpp

Input Data:

inspection report query EDI message with valid query number

Expected Outcome:

valid internal query number is returned

Test Procedure Steps:

translate EDI message (IOT_translate_incoming_message)

extract query number from query transaction (IOT_get_transaction)

Analysis Procedures:

using the debugger, verify that valid data value is returned

�Unit Test Report

					

Unit ID: iot_validate_data

UTP ID: IOT_VAL_DTA17

Version Control ID: IOT V1.2.1

Test Seq Number: 1

Test Conductor: R.H. Goldfarb			Test Date: 8/21/97

Purpose of Test:

to verify that the specified text string representing an query number is converted to an internal query value

Actual Results:

the specified text is converted to a valid query number

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�

Appendix H - Unit Test (OMH)

Output Message Handler (OMH)

Unit Test Plans and Test Reports

�Unit Test Plan

				

Unit ID: OMH_output_message_generator

UTP ID: OMH_output_message_generator

Version Control ID: APL V01-B04	

Unit Function:

OMH_output_message_generator calls the IOT to produce an EDI message containing the snapshot given to it in the CVIEW data structures and send it to the proper recipient’s mailbox.

Requirement to be validated:

OMH_output_message_generator correctly calls the IOT to translate the information contained in the CVIEW data structures into an EDI snapshot message.

OMH_output_message_generator correctly calls MBX_Send to forward the EDI snapshot to the recipient’s mailbox.

Test Tools, Drivers, or Special Conditions:

The Visual C++ debugger was used as a test tool to step through the routine and view data at each stage. The EudoraLite mail package was used to send the email message to the CVIEW input mailbox. The Distinct SMTP and POP mail protocol libraries, and associated MBX routines were used to extract the message from the input mailbox into a temporary file for further processing.

Input Data:

A carrier snapshot request message in EDI format with a DOT number known to exist in the database was used as input.

Expected Outcome:

OMH_output_message_generator correctly calls the IOT to translate the CVIEW data structures into an EDI carrier snapshot message.

OMH_output_message_generator correctly calls MBX to send the EDI snapshot to the correct recipient’s mailbox.

Test Procedure Steps:

Start the CVIEW service in command line form so that the debugger can be used.

Set a breakpoint at the beginning of OMH_output_message_generator.

Send a carrier snapshot request message to the input mailbox.

Run to the breakpoint.

Check that the CVIEW data structures contain the correct information for the requested carrier.

Check that IOT successfully produces an EDI carrier snapshot output message from the information.

Check that MBX_Send give a success status on forwarding the message to the recipient’s mailbox

Use EudoraLite to actually read the EDI carrier snapshot from the recipient’s mailbox.

Analysis Procedures:

�Unit Test Report

					

Unit ID: OMH_output_message_generator

UTP ID: OMH_output_message_generator	

Version Control ID: APL V01-B04			Test Seq Number: 1

Test Conductor: Grace McGonnigal			Test Date: 4/15/97

Purpose of Test:

To insure that OMH_output_message_generator properly calls IOT to produce a carrier snapshot message and properly calls MBX to send that message to the recipient.

Actual Results:

OMH_output_message_generator utilized IOT to translate the information contained in the CVIEW data structures into an EDI carrier snapshot output message.

OMH_output_message_generator utilized MBX to send the message to the recipient’s mailbox.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: OMH_send_error_message

UTP ID: OMH_send_error_message

Version Control ID: APL V01-B04	

Unit Function:

OMH_send_error_message calls the IOT to produce an error message and calls MBX to send it to the proper recipient’s mailbox.

Requirement to be validated:

OMH_send_error_message correctly calls the IOT to produce an error message.

OMH_send_error_message correctly calls MBX_Send to forward the error message to the recipient’s mailbox.

Test Tools, Drivers, or Special Conditions:

The Visual C++ debugger was used as a test tool to step through the routine and view data at each stage. The EudoraLite mail package was used to send the email message to the CVIEW input mailbox. The Distinct SMTP and POP mail protocol libraries, and associated MBX routines were used to extract the message from the input mailbox into a temporary file for further processing.

Input Data:

A carrier snapshot request message in EDI format with an invalid DOT number known NOT to exist in the database was used as input.

Expected Outcome:

OMH_send_error_message correctly calls the IOT to produce an error message.

OMH_send_error_message correctly calls MBX to send the error message to the correct recipient’s mailbox.

Test Procedure Steps:

Start the CVIEW service in command line form so that the debugger can be used.

Set a breakpoint at the beginning of OMH_send_error_message.

Send a carrier snapshot request message with a nonexistent DOT number to the input mailbox.

Run to the breakpoint.

Check that IOT successfully produces an error message from the information.

Check that MBX_Send give a success status on forwarding the message to the recipient’s mailbox

Use EudoraLite to actually read the error from the recipient’s mailbox.

Analysis Procedures:

�Unit Test Report

					

Unit ID: OMH_send_error_message

UTP ID: OMH_send_error_message	

Version Control ID: APL V01-B04			Test Seq Number: 1

Test Conductor: Grace McGonnigal			Test Date: 4/15/97

Purpose of Test:

To insure that OMH_send_error_message properly calls IOT to produce a carrier snapshot message and properly calls MBX to send that message to the recipient.

Actual Results:

OMH_send_error_message utilized IOT to create an error message.

OMH_send_error_message utilized MBX to send the message to the recipient’s mailbox.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________�

Appendix I - Unit Test (SDB)

CVIEW Database (SDB) Library

Unit Test Plans and Test Reports

�Unit Test Plan

				

Unit ID: sdb_get_available_sub_id

UTP ID: SDB_GET_AVAILABLE_SUB_ID01

Version Control ID: SAIC V01-B01	

Unit Function:

This function reads through the subscription table in the database and returns the highest existing sub_id + 1

Requirement to be validated:

3.1.4.1

Test Tools, Drivers, or Special Conditions:

Input Data:

none

Expected Outcome:

The next available subscription_id

Test Procedure Steps:

Query the database for the highest sub_id (select subscription_id from subscription)

Call function and check answer against a manual sql query

Analysis Procedures:

�Unit Test Report

					

Unit ID: sdb_get_available_sub_id

UTP ID: SDB_GET_AVAILABLE_SUB_ID01	

Version Control ID: SAIC V01-B01			Test Seq Number: 	01

Test Conductor: Curt Stapleton				Test Date: 8/6/96

Purpose of Test:

To verify that the function executes as planned.

Actual Results:

Manual query showed 6 to be the highest sub_id function returned 7 (ok)

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: sdb_get_subscription

UTP ID: SDB_GET_SUBSCRIPTION

Version Control ID: SAIC V01-B01	

Unit Function:

This function selects a subscription record from the database given an intger value. It then puts that subscription record into a C data structure and returns that structure.

Requirement to be validated:

Test Tools, Drivers, or Special Conditions:

Input Data:

An integer value

Expected Outcome:

A C data structure for a subscription with id =input found in the database

Test Procedure Steps:

Call function with existing subscription id

Call function with negative subscription id

Call function with 0 subscription id

Call function with non-existent positive subscription id

Analysis Procedures:

�Unit Test Report

					

Unit ID: sdb_get_subscription

UTP ID: SDB_GET_SUBSCRIPTION	

Version Control ID: SAIC V01-B01			Test Seq Number: 	01

Test Conductor: Curt Stapleton			Test Date: 8/5/96

Purpose of Test:

The verify that the function executes as expected given valid and invalid input.

Actual Results:

Returned correct subscription

Returned subscription with id = 0 (correct action)

Returned subscription with id = 0 (correct action)

Returned subscription with id = 0 (correct action)

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: sdb_get_sub_id_list

UTP ID: SDB_GET_SUB_ID_LIST01

Version Control ID: SAIC V01-B01	

Unit Function:

This function reads all subscription ids found in the subscription table and returns a linked list of those ids.

Requirement to be validated:

3.1.4.2

Test Tools, Drivers, or Special Conditions:

Input Data:

none

Expected Outcome:

Correct list of subscription ids

Test Procedure Steps:

Use sqlplus to select list of subscription ids (select subscription_id from subscription)

Compare sql list to the list created and returned by sdb_get_sub_id_list

Analysis Procedures:

�Unit Test Report

					

Unit ID: sdb_get_sub_id_list

UTP ID: SDB_GET_SUB_ID_LIST01	

Version Control ID: SAIC V01-B01			Test Seq Number: 	01

Test Conductor: Curt Stapleton			Test Date: 8/5/96

Purpose of Test:

To verify that the list of ids returned matches the list produced by a sql select command

Actual Results:

function returns the correct list

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: sdb_insert_new_subscription

UTP ID: SDB_INSERT_NEW_SUBSCRIPTION01

Version Control ID: SAIC V01-B01	

Unit Function:

This function adds a new subscription to the subscription database table and returns SLP_OK upon success.

Requirement to be validated:

3.1.4.1

Test Tools, Drivers, or Special Conditions:

Input Data:

a new subscription (C data structure)

Expected Outcome:

an enumerated value indicating success or failure

Test Procedure Steps:

Call function with a subscription

Analysis Procedures:

�Unit Test Report

					

Unit ID: sdb_insert_new_subscription

UTP ID: SDB_INSERT_NEW_SUBSCRIPTION01	

Version Control ID: SAIC V01-B01			Test Seq Number: 	01

Test Conductor: Curt Stapleton			Test Date: 8/6/96

Purpose of Test:

To verify that the function executes as planned

Actual Results:

The function inserted the subscription as planned

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________�

Appendix J - Unit Test (SDM)

CVIEW Data Manager (SDM)

Unit Test Plans and Test Reports

�Unit Test Plan

				

Unit ID: SDM_add_snap_record

UTP ID: SDM_add_snap_record

Version Control ID: APL V01-B04	

Unit Function:

This routine is called when a carrier snapshot update is being processed. It determines whether the update is a full snapshot update or a MCMIS update and calls the appropriate database function.

Requirement to be validated:

SDM_add_snap_record will determine type of database update, either FULL or MCMIS.

SDM_add_snap_record will call an appropriate database function to perform the update.

Test Tools, Drivers, or Special Conditions:

The Visual C++ debugger was used as a test tool to step through the routine and view data at each stage.

The SQLPlus utility was used to verify that the database update was performed. A mail send utility was used to send FULL updates to the input mailbox because their line length is too long for the EudoraLite package. EudoraLite was used to send a MCMIS file update message to the input mailbox.

Input Data:

Mail messages containing full carrier snapshots were used to test the FULL update. A test MCMIS file and a MCMIS file update message were used to test the MCMIS update.

Expected Outcome:

A full snapshot will have the view set to SAFER_FULL_VIEW and will be successfully written to the database using SDB_Update_Carrier_FULL.

A MCMIS snapshot will have the view set to SAFER_ MCMIS _VIEW and will be successfully written to the database using SDB_Update_Carrier_ MCMIS .

Test Procedure Steps:

Start the CVIEW service in command line form so that the debugger can be used.

Send a valid full carrier snapshot and a valid MCMIS file update message to the input mailbox.

Set a break point at SDM_add_snap_record and step through the routine to verify that the view is set correctly for each record and that the correct database function is called.

Also verify that the database functions return success code.

Use SQLPlus to verify that the database was updated.

Analysis Procedures:

�Unit Test Report

					

Unit ID: SDM_add_snap_record

UTP ID: SDM_add_snap_record	

Version Control ID: APL V01-B04			Test Seq Number: 1

Test Conductor: Grace McGonnigal			Test Date: 4/15/97

Purpose of Test:

To insure that SDM_add_snap_record correctly updates the database for FULL or MCMIS carrier snapshot views.

Actual Results:

A full carrier snapshot had view set to FULL in the CVIEW data structure. The SDB_Update_Carrier_FULL function was successfully called to write it to the database.

A MCMIS carrier snapshot had view set to MCMIS in the CVIEW data structure. The SDB_Update_Carrier_ MCMIS function was successfully called to write it to the database.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: SDM_convert_mcmis_snap

UTP ID: SDM_convert_mcmis_snap

Version Control ID: APL V01-B04	

Unit Function:

This routine is used to convert each record read in from a MCMIS update file into the format required by the database.

Requirement to be validated:

SDM_convert_mcmis_snap reliably converts record input from a MCMIS file into the CVIEW data structure cs_v1_t in the form required by the database.

Test Tools, Drivers, or Special Conditions:

The Visual C++ debugger was used as a test tool to step through the routine and view data at each stage. A test MCMIS file was used and a MCMIS file update message was sent using the EudoraLite package.

Input Data:

A test file containing MCMIS format data was used. A MCMIS file update message in EudoraLite format was used.

Expected Outcome:

The MCMIS record will be converted into the format needed by the database.

Test Procedure Steps:

Start the CVIEW service in command line form so that the debugger can be used.

Send a MCMIS file update message to the input mailbox.

Set a break point at the beginning of SDM_convert_mcmis_snap. On arrival there, check that the input cs_v1_t structure contains a carrier snapshot in MCMIS format.

Step through to check that the following modifications are made to the input snapshot

Leading zeroes are trimmed from CARRIER_ID_NUMBER.

If ISSUING_AUTHORITY equals “00” it is converted to a NULL.

If TERMINAL_ID equals “00” it is converted to a NULL.

If any of the three ICC numbers equal zero, it is converted to a NULL.

If any of the three ICC numbers have leading zeroes, they are removed.

Leading zeroes are removed from STATE_CARRIER_ID.

Other fields containing blanks are converted to NULL.

Other fields containing zero are converted to NULL.

Leading zeroes are trimmed from all other fields.

Convert date fields containing all zeroes to all blanks.

Unit Test Report

					

Unit ID: SDM_convert_mcmis_snap

UTP ID: SDM_convert_mcmis_snap	

Version Control ID: APL V01-B04			Test Seq Number: 1

Test Conductor: Grace McGonnigal			Test Date: 4/15/97

Purpose of Test:

To insure that SDM_convert_mcmis_snap correctly modifies a CVIEW carrier snapshot in a cs_v1_t data structure so that it will be written to the database in the desired format.

Actual Results:

A MCMIS record stored in a cs_v1_t structure was modified to have each field conform to the desired database format.

The modified record was correctly written to the database in the course of subsequent processing.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________ �Unit Test Plan

				

Unit ID: SDM_initialize

UTP ID: SDM_initialize

Version Control ID: APL V01-B04	

Unit Function:

This routine initializes the CVIS file pointer and saves the section name from the WIN.INI file for future use during MCMIS processing.

Requirement to be validated:

SDM_initialize sets the CVIS file pointer to NULL and saves the section name of the WIN.INI file.

Test Tools, Drivers, or Special Conditions:

The Visual C++ debugger was used as a test tool to step through the routine and view data at each stage.

Input Data:

None, except for the WIN.INI file.

Expected Outcome:

SDM_initialize will set the CVIS file pointer to NULL and will correctly save the section name used to access the WIN.INI file..

Test Procedure Steps:

Start the CVIEW service in command line form so that the debugger can be used.

Set a breakpoint at the beginning of SDM_initialize.

Step through to check that the CVIS file pointer is set to NULL.

Check also that the section name used to access WIN.INI is saved in a global string.

Analysis Procedures:

�Unit Test Report

					

Unit ID: SDM_initialize

UTP ID: SDM_initialize	

Version Control ID: APL V01-B04			Test Seq Number: 1

Test Conductor: Grace McGonnigal			Test Date: 4/15/97

Purpose of Test:

To insure that SDM_initialize sets the CVIS file pointer to NULL and saves the name of the section used within WIN.INI in a global variable for later use by SDM routines performing MCMIS processing.

Actual Results:

SDM_initialize correctly set the CVIS file pointer to NULL.

SDM_initialize correctly saved the section name used to access the WIN.INI file.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: SDM_is_changed_CVIS_snap

UTP ID: SDM_is_changed_CVIS_snap

Version Control ID: APL V01-B04	

Unit Function:

This routine compares each CVIS field in a new and old carrier snapshot to determine whether or not to write the record to the CVIS file. The old carrier snapshot is retrieved from the database, while the new one comes in through a MCMIS file update.

Requirement to be validated:

If one or more of the CVIS fields differ between the new and old carrier snapshot, SDM_is_changed_CVIS_snap returns TRUE, otherwise FALSE.

Test Tools, Drivers, or Special Conditions:

The Visual C++ debugger was used as a test tool to step through the routine and view data at each stage. A test MCMIS file was used and a MCMIS file update message was sent using the EudoraLite package.

Input Data:

A test file containing MCMIS format data was used. A MCMIS file update message in EudoraLite format was used.

Expected Outcome:

If any CVIS fields have changed, the routine returns TRUE. If all CVIS fields are the same in the record retrieved from the database and the record derived from the MCMIS input file, the routine returns FALSE.

Test Procedure Steps:

Start the CVIEW service in command line form so that the debugger can be used.

Send a MCMIS file update message to the input mailbox. Use a MCMIS file that has just been used to update the database so that there will be no changes unless changes are artificially inserted.

Set a break point at the beginning of SDM_is_changed_CVIS_snap.

Look for differences in the fields using the debugger. There should be none.

Step through a record without changes to insure that the routine returns FALSE.

On the next record, manually change some fields within the debugger. Choose obvious fields such as CARRIER_NAME.

Step through a record with changes to insure that the routine returns TRUE.

Analysis Procedures:

�Unit Test Report

					

Unit ID: SDM_is_changed_CVIS_snap

UTP ID: SDM_is_changed_CVIS_snap	

Version Control ID: APL V01-B04			Test Seq Number: 1

Test Conductor: Grace McGonnigal			Test Date: 4/15/97

Purpose of Test:

To insure that SDM_is_changed_CVIS_snap returns TRUE if there are changes to CVIS fields and FALSE if there are no changes.

Actual Results:

A MCMIS record identical to that from the database caused SDM_is_changed_CVIS_snap to return FALSE.

A MCMIS record artificially altered to have CVIS fields differing from those in the database caused SDM_is_changed_CVIS_snap to return TRUE.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: SDM_is_null_snap

UTP ID: SDM_is_null_snap

Version Control ID: APL V01-B04	

Unit Function:

This routine checks a pointer to a cs_v1_t carrier snapshot structure. It returns TRUE if the pointer is NULL and FALSE if it is not.

Requirement to be validated:

If the pointer to the carrier snapshot is NULL, SDM_is_null_snap returns TRUE, otherwise FALSE.

Test Tools, Drivers, or Special Conditions:

The Visual C++ debugger was used as a test tool to step through the routine and view data at each stage. A test MCMIS file was used and a MCMIS file update message was sent using the EudoraLite package.

Input Data:

A test file containing MCMIS format data was used. A MCMIS file update message in EudoraLite format was used.

Expected Outcome:

If the pointer is NULL, the routine returns TRUE, and otherwise returns FALSE.

Test Procedure Steps:

Start the CVIEW service in command line form so that the debugger can be used.

Send a MCMIS file update message to the input mailbox. Use a MCMIS file that has just been used to update the database so that there will be no changes unless changes are artificially inserted.

Set a break point before the call to SDM_is_null_snap.

Set pointer to NULL if it is not. Step through to insure that SDM_is_null_snap returns FALSE..

Step through with a non-NULL pointer

Analysis Procedures:

�Unit Test Report

					

Unit ID: SDM_is_null_snap

UTP ID: SDM_is_null_snap	

Version Control ID: APL V01-B04			Test Seq Number: 1

Test Conductor: Grace McGonnigal			Test Date: 4/15/97

Purpose of Test:

To insure that SDM_is_null_snap returns TRUE if called with a NULL pointer as an argument and FALSE otherwise.

Actual Results:

A NULL pointer resulted in a TRUE status being returned by SDM_is_null_snap.

A non-NULL pointer resulted in a FALSE status being returned by SDM_is_null_snap.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

 �Unit Test Plan

				

Unit ID: SDM_process_exact_match

UTP ID: SDM_process_exact_match

Version Control ID: APL V01-B04	

Unit Function:

This routine is called when a carrier snapshot request is received and when a carrier snapshot update results in a subscription being fulfilled. SDM_process_exact_match calls a database function to attempt the retrieval. If successful, SDM_process_exact_match calls OMH to send the carrier snapshot to the requester or subscriber. If unsuccessful, SDM_process_exact_match calls OMH to send an error message to the requester.

Requirement to be validated:

SDM_process_exact_match will receive a snapshot request for a DOT or ICC number.

SDM_process_exact_match will call the database function to perform the retrieval.

SDM_process_exact_match will call OMH to send either a valid snapshot or an error message to the requester.

Test Tools, Drivers, or Special Conditions:

The Visual C++ debugger was used as a test tool to step through the routine and view data at each stage.

The EudoraLite mail package was used to view the carrier snapshot or error message in the requester’s mailbox.

Input Data:

Carrier snapshot requests containing valid DOT numbers, ICC numbers, and nonexistent DOT or ICC numbers were sent to the input mailbox. Processing occurring before calling SDM_process_exact_match stored the information contained in these messages in the CVIEW data structures for use by this routine.

Expected Outcome:

Valid DOT or ICC numbers in the request will result in the carrier snapshot being sent to the requester’s mailbox..

Invalid DOT or ICC numbers, including blanks, will result in an error message being sent to the requester’s mailbox.

Test Procedure Steps:

Start the CVIEW service in command line form so that the debugger can be used.

Send a number of valid and invalid DOT and ICC number requests to the CVIEW input mailbox.

Step through the SDM_process_exact_match routine.

On completion, check the requester’s mailbox to verify that the snapshot or the error message was received.

Analysis Procedures:

�Unit Test Report

					

Unit ID: SDM_process_exact_match

UTP ID: SDM_process_exact_match	

Version Control ID: APL V01-B04			Test Seq Number: 1

Test Conductor: Grace McGonnigal			Test Date: 4/15/97

Purpose of Test:

To insure that SDM_process_exact_match correctly sends carrier snapshots to the requester for valid DOT or ICC number requests, and sends an error message for invalid or nonexistent requests.

Actual Results:

Valid DOT number requests resulted in a carrier snapshot being sent to the requester’s mailbox.

Valid ICC number requests resulted in a carrier snapshot being sent to the requester’s mailbox.

Invalid or nonexistent DOT and ICC number requests resulted in an error message being sent to the requester’s mailbox.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: SDM_retrieve_safety_data

UTP ID: SDM_retrieve_safety_data

Version Control ID: APL V01-B04	

Unit Function:

This routine receives an carrier snapshot request and routes it for processing by simply calling SDM_process_exact_match.

Requirement to be validated:

SDM_retrieve_safety_data calls SDM_process_exact_match with the correct CVIEW data structures, properly filled in.

Test Tools, Drivers, or Special Conditions:

The Visual C++ debugger was used as a test tool to step through the routine and view data at each stage. A test MCMIS file was used and a MCMIS file update message was sent using the EudoraLite package.

Input Data:

A carrier snapshot request in DOT number format was used.

Expected Outcome:

SDM_retrieve_safety_data will correctly call SDM_process_exact_match and result in a carrier snapshot retrieval.

Test Procedure Steps:

Start the CVIEW service in command line form so that the debugger can be used.

Set a breakpoint at the beginning of SDM_retrieve_safety_data.

Send a carrier snapshot request message with a valid DOT number.

Run to the breakpoint. Check that the request structure contains a valid snapshot request.

Step through and insure that SDM_process_exact_match gives a successful status code and returns a carrier snapshot in the update structure.

Check the requester’s mailbox to be sure that the request was sent out.

Analysis Procedures:

�Unit Test Report

					

Unit ID: SDM_retrieve_safety_data

UTP ID: SDM_retrieve_safety_data 	

Version Control ID: APL V01-B04			Test Seq Number: 1

Test Conductor: Grace McGonnigal			Test Date: 4/15/97

Purpose of Test:

To insure that SDM_retrieve_safety_data results in a carrier snapshot being retrieved and sent out.

Actual Results:

SDM_retrieve_safety_data correctly called SDM_process_exact_match .

The requested snapshot was retrieved and sent to the requester’s mailbox.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

 �Unit Test Plan

				

Unit ID: SDM_setup_mcmis_processing

UTP ID: SDM_setup_mcmis_processing

Version Control ID: APL V01-B04	

Unit Function:

This routine opens the CVIS file and the MCMIS log file during MCMIS processing and stores the file pointers in global variables.

Requirement to be validated:

SDM_setup_mcmis_processing creates files with unique names for the CVIS and MCMIS log files.

SDM_setup_mcmis_processing opens the files and stores the file pointers in globals for access by other SDM routines.

Test Tools, Drivers, or Special Conditions:

The Visual C++ debugger was used as a test tool to step through the routine and view data at each stage. A test MCMIS file was used and a MCMIS file update message was sent using the EudoraLite package.

Input Data:

A test MCMIS file was used.

Expected Outcome:

SDM_setup_mcmis_processing will open the CVIS and MCMIS files and store the file pointers in globals.

Test Procedure Steps:

Start the CVIEW service in command line form so that the debugger can be used.

Set a breakpoint at the beginning of SDM_setup_mcmis_processing.

Send a MCMIS file update message to the input mailbox.

Run to the breakpoint. Check that the CVIS and MCMIS files are created, with unique name.

Check that the file pointers are stored in globals.

Continue processing without stepping through to insure that data are written to both files.

Analysis Procedures:

�Unit Test Report

					

Unit ID: SDM_setup_mcmis_processing

UTP ID: SDM_setup_mcmis_processing	

Version Control ID: APL V01-B04			Test Seq Number: 1

Test Conductor: Grace McGonnigal			Test Date: 4/15/97

Purpose of Test:

To insure that SDM_setup_mcmis_processing properly initializes the CVIS and MCMIS log files.

Actual Results:

SDM_setup_mcmis_processing opened a CVIS and a MCMIS log file with unique names

The file pointers were stored in globals and subsequent SDM processing was able to access them and write data to both files .

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

 �Unit Test Plan

				

Unit ID: SDM_snap_data_manager

UTP ID: SDM_snap_data_manager

Version Control ID: APL V01-B04	

Unit Function:

This routine handles carrier snapshot updates whether they originate from a MCMIS update or from individual update records coming in through a mailbox.

Requirement to be validated:

SDM_snap_data_manager correctly handles a MCMIS update record- determines whether it should be written to the CVIS file, writes the CVIS file, updates the database, and calls SLP to fulfill any existing subscriptions.

SDM_snap_data_manager handles a snapshot update read in from a mailbox including a subscription timer mailbox. It updates the database and calls SLP to fulfill any existing subscriptions..

Test Tools, Drivers, or Special Conditions:

The Visual C++ debugger was used as a test tool to step through the routine and view data at each stage. A test MCMIS file was used and a MCMIS file update message was sent using the EudoraLite package. Individual snapshot updates in application file format and EDI format were generated and placed in a subscription timer mailbox and into the CVIEW input mailbox.

Input Data:

A test MCMIS file was used. Individual snapshots in application file format and EDI format were obtained by sending requests to the CVIEW service and saving the returned snapshots.

Expected Outcome:

SDM_snap_data_manager correctly handled a MCMIS update. It updated the database, wrote all records with changes to CVIS fields to the CVIS file, and fulfilled subscriptions.

SDM_snap_data_manager correctly handled individual snapshot update. It updated the database, and fulfilled subscriptions. It did this whether the snapshots came in through the CVIEW input mailbox or a subscription timer mailbox. It did this for both EDI format and application file format snapshots.

Test Procedure Steps:

Start the CVIEW service in command line form so that the debugger can be used.

Set a breakpoint at the beginning of SDM_snap_data_manager.

Send a MCMIS file update message to the input mailbox.

Run to the breakpoint.

Check that the database is updated and that subscriptions are fulfilled.

Continue running without stepping to insure that data processing completes.

Stop the CVIEW service.

Load snapshots in EDI and/or application file format into a mailbox that can be used as a subscription timer mailbox.

Send snapshots in EDI and/or application file format to the CVIEW input mailbox.

Set up some test subscribers for these records in the subscriber_parms table.

Step through and check that the database is updated.

Check the subscribers’ mailboxes to be sure that subscriptions are fulfilled.

Analysis Procedures:

Following a MCMIS, subscriber mailboxes were thoroughly checked to prove that each record in the update that was contained in their subscriptions was actually sent to them. A SQL script was used to retrieve a list of DOT numbers contained in the update and also in the subscriber_parms list for each given subscriber. The mailboxes for three subscribers were then manually checked.

�Unit Test Report

					

Unit ID: SDM_snap_data_manager

UTP ID: SDM_snap_data_manager	

Version Control ID: APL V01-B04			Test Seq Number: 1

Test Conductor: Grace McGonnigal			Test Date: 4/15/97

Purpose of Test:

To insure that SDM_snap_data_manager properly processes MCMIS update records and other carrier snapshot updates.

Actual Results:

SDM_snap_data_manager wrote MCMIS records to the CVIS file if any CVIS fields had changed.

SDM_snap_data_manager wrote MCMIS records to the database and sent copies to all subscribers’ mailboxes.

SDM_snap_data_manager updated the database with carrier snapshots received through subscription timer mailboxes and through the CVIEW input mailbox. It sent copies to all subscribers in this case also.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: SDM_update_safety_data

UTP ID: SDM_update_safety_data

Version Control ID: APL V01-B04	

Unit Function:

This routine calls SDM_update_safety_data to process MCMIS snapshot updates as well as individual snapshot updates..

Requirement to be validated:

SDM_update_safety_data correctly calls SDM_snap_data_manager with the needed CVIEW data structures to process a MCMIS snapshot update.

SDM_update_safety_data correctly calls SDM_snap_data_manager with the needed CVIEW data structures to process individual snapshot updates received from mailboxes.

Test Tools, Drivers, or Special Conditions:

The Visual C++ debugger was used as a test tool to step through the routine and view data at each stage. A test MCMIS file was used and a MCMIS file update message was sent using the EudoraLite package. Individual snapshot updates in application file format and EDI format were generated and placed in a subscription timer mailbox and into the CVIEW input mailbox.

Input Data:

A test MCMIS file was used. Individual snapshots in application file format and EDI format were obtained by sending requests to the CVIEW service and saving the returned snapshots.

Expected Outcome:

SDM_update_safety_data correctly handled a MCMIS update..

SDM_update_safety_data correctly handled individual snapshot update.

Test Procedure Steps:

Start the CVIEW service in command line form so that the debugger can be used.

Set a breakpoint at the beginning of SDM_update_safety_data.

Send a MCMIS file update message to the input mailbox.

Run to the breakpoint.

Check that SDM_snap_data_manager is called with the CVIEW data structures properly filled in.

Stop the CVIEW service.

Load snapshots in EDI and/or application file format into a mailbox that can be used as a subscription timer mailbox.

Send snapshots in EDI and/or application file format to the CVIEW input mailbox.

Step through and check that the database is updated.

Check that SDM_snap_data_manager is called with the CVIEW data structures properly filled in.

Analysis Procedures:

�Unit Test Report

					

Unit ID: SDM_update_safety_data

UTP ID: SDM_update_safety_data	

Version Control ID: APL V01-B04			Test Seq Number: 1

Test Conductor: Grace McGonnigal			Test Date: 4/15/97

Purpose of Test:

To insure that SDM_update_safety_data properly processes MCMIS update records and other carrier snapshot updates by calling SDM_snap_data_manager.

Actual Results:

SDM_update_safety_data correctly called SDM_snap_data_manager to process a MCMIS record.

SDM_update_safety_data correctly called SDM_snap_data_manager to process carrier snapshots received from the CVIEW input mailbox and from subscription timer mailboxes.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

�Unit Test Plan

				

Unit ID: SDM_write_cvis_record

UTP ID: SDM_write_cvis_record

Version Control ID: APL V01-B04	

Unit Function:

SDM_write_cvis_record writes each CVIS field in a MCMIS snapshot update to the CVIS file.

Requirement to be validated:

SDM_write_cvis_record writes every CVIS field in the MCMIS snapshot to the CVIS file with the correct field length and record length.

Test Tools, Drivers, or Special Conditions:

The Visual C++ debugger was used as a test tool to step through the routine and view data at each stage. A test MCMIS file was used and a MCMIS file update message was sent using the EudoraLite package.

Input Data:

A test MCMIS file and MCMIS update message were used.

Expected Outcome:

SDM_write_cvis_record correctly wrote the CVIS fields of a MCMIS record to the CVIS file.

Field lengths and record length were correct.

Test Procedure Steps:

Start the CVIEW service in command line form so that the debugger can be used.

Set a breakpoint at the beginning of SDM_write_cvis_record.

Send a MCMIS file update message to the input mailbox.

Run to the breakpoint.

Check that each field is written.

Compare field and line lengths with those of a CVIS file known to be correct

Analysis Procedures:

�Unit Test Report

					

Unit ID: SDM_write_cvis_record

UTP ID: SDM_write_cvis_record	

Version Control ID: APL V01-B04			Test Seq Number: 1

Test Conductor: Grace McGonnigal			Test Date: 4/15/97

Purpose of Test:

To insure that SDM_write_cvis_record properly writes CVIS records to the CVIS file.

Actual Results:

SDM_write_cvis_record correctly wrote all CVIS fields in a MCMIS record to the CVIS file.

All field lengths and record length were correct and were equal to those in a CVIS file known to be correct.

Reviewed By (SAIC): 	_________________	 Date:	______________

Approved By (JHU/APL):	_________________	 Date:	______________

	

�PAGE �iii�

	

�Master Test Plan		August 31, 1997

�

The Johns Hopkins University Applied Physics Laboratory 	Page �PAGE �ii� 	

�

The Johns Hopkins University Applied Physics Laboratory 	Page A-�PAGE �2� 	

�

The Johns Hopkins University Applied Physics Laboratory 	Page B-�PAGE �71� 	

�

The Johns Hopkins University Applied Physics Laboratory 	Page C-� PAGE �1�

�

The Johns Hopkins University Applied Physics Laboratory	Page D-� PAGE �22�

�

The Johns Hopkins University Applied Physics Laboratory	Page E-� PAGE �102�

�

The Johns Hopkins University Applied Physics Laboratory	Page F-� PAGE �13�

�

The Johns Hopkins University Applied Physics Laboratory	Page G-� PAGE �92�

�

The Johns Hopkins University Applied Physics Laboratory	Page H-� PAGE �6�

�

The Johns Hopkins University Applied Physics Laboratory	Page I-� PAGE �9�

�

The Johns Hopkins University Applied Physics Laboratory	Page J-� PAGE �28�

