Federal Motor Carrier Safety Administration (FMCSA)

[image: image1.png]FMCSA

MatchWare Applications for

The New Motor Carrier Management

Information System

(New MCMIS)

Design Document

POR-02-7385 V1.0

December 2002
Baseline Version
Prepared for:
[image: image28.wmf]1.5.9 Apply Heuristics

1.5.9.2

DOT or ICC

cand?

1.5.9.1

while more

candidates to

process

1.5.9.6.4

Set DOT/ICC

Heuristic def found

flag

1.5.9.5.5

DOT/ICC

Heuristic def

found?

No

Yes

No

1.5.9.3

Name/Address

weights high

enough?

1.5.9.4

Set as promotable

Yes

1.5.9.6.1

Promotable?

1.5.9.6.3

DOT/ICC cand

and active and

definite?

Yes

1.5.9.6.2

Compute rule-

based weight

Yes

No

1.5.9.5.1

Promotable?

1.5.9.5.2

Demote

Matchware definite

to high potential.

No

1.5.9.5.3

Active?

Yes

Yes

No

Yes

1.5.9.5.4

Set Matchware

definite found flag

Loop end

1.5.9.7

Re-sort list

No

1.5.9.5

Matchware

definite

1.5.9.6

Not a Matchware

definite

US Department of Transportation
Federal Motor Carrier Safety Administration

400 Seventh Street, SW

Washington, DC 20590

Prepared by:

[image: image2.wmf]
The Johns Hopkins University

Applied Physics Laboratory

11100 Johns Hopkins Road

Laurel, MD 20723-6099

Note

The Motor Carrier Safety Improvement Act was signed into law on December 9, 1999. This act established a new Federal Motor Carrier Safety Administration (FMCSA) within the US Department of Transportation (DOT), effective January 1, 2000. Prior to that, the motor carrier and highway safety program was administered under the Federal Highway Administration (FHWA).

The mission of the FMCSA is to improve truck and commercial passenger carrier safety on our nation’s highways through information technology, targeted enforcement, research and technology, outreach, and partnerships. The FMCSA manages the ITS/CVO Program, a voluntary effort involving public and private partnerships that uses information systems, innovative technologies, and business practice reengineering to improve safety, simplify government administrative systems, and provide savings to states and motor carriers. The FMCSA works closely with the FHWA’s ITS Joint Program Office (JPO) to ensure the integration and interoperability of ITS/CVO systems with the national ITS program.

Baseline Issue

This is a final baseline document describing an as-built, as-delivered system. There are no updates planned for this document. Documentation describing future versions of the system will be assigned different titles/version numbers as required.
This document is disseminated in the interest of information exchange. The Johns Hopkins University Applied Physics Laboratory (JHU/APL) assumes no liability for its contents or use thereof. This report does not constitute a standard, specification, or regulation. JHU/APL does not endorse products or manufacturers. Trade and manufacturer’s names appear in this report only because they are considered essential to the object of this document.

Note: This document and other CVISN-related documentation are available for review and downloading by the ITS/CVO community from the CVISN site on the World Wide Web. All updates to this document will be maintained and published on that site; hardcopies of future versions will not normally be distributed. The URL for the site is http://www.jhuapl.edu/cvisn/.

Review and comments to this document are welcome. Please send comments to:

Pankaj R. Karnik

The Johns Hopkins University Applied Physics Laboratory

11100 Johns Hopkins Road

Laurel, MD 20723

Phone:
240-228-7815

Fax:
240-228-5928

E-Mail:
Pankaj.Karnik@jhuapl.edu
MatchWare Applications for New MCMIS

Table of Contents

Page

1–11.
Introduction

2–12.
MatchWare Applications for New MCMIS

2–22.1
Match Handler Program

2–22.1.1
Search and Match Services for New MCMIS

2–32.1.2
Standardization Services for New MCMIS

2–32.2
Match Handler PL/SQL

2–42.3
MatchWare Services API

3–13.
Strategy for Using MatchWare

3–13.1
Standardization Services

3–23.2
Matching Services

3–33.3
MatchWare Services API Reference Tables

3–33.4
Searching Strategy

3–63.5
Matching after Searching

3–73.6
Scores and Results

4–14.
Carrier Search and Match Algorithm

4–14.1
FMCSA Business Rules

4–14.1.1
Partial Information Used for Establishing Identity

4–24.1.2
Intrastate Carriers

4–24.1.3
Inactive Carriers

4–24.1.4
Queries with USDOT or ICC Number

4–34.2
Impact on the Carrier Search and Match Algorithm

5–15.
MatchWare / Integrity Configuration Files

A–1Appendix A. MatchWare Services API Reference Tables

B–1Appendix B. MatchWare Configurations and Settings

C–1Appendix C. FMCSA Rules for Declaring Matches

D–1Appendix D. Carrier Search and Match Algorithm

E–1Appendix E. Match Handler for New MCMIS

E–3E.1
Match Handler

E–3E.2
Match Handler Architecture

E–5E.3
Match Handler Program Design

E–5E.4
Match Handler Database Setup

E–6E.5
Match Handler Program Operation and Administration

F–1Appendix F. MatchWare Applications Distribution CD

F–3F.1
MatchWare Applications for New MCMIS CD

F–3F.2
Call Hierarchy and Cross Reference

G–1Appendix G. Source Code Description

G–3G.1
Introduction

G–3G.2
Directory Structure

G–4G.3
Module Function Descriptions

H–1Appendix H. MatchWare Services API

H–3H.1
MatchWare

H–4H.2
MatchWare Services API Class Descriptions

I–1Appendix I. Carrier Search and Match Algorithm Adaptation

J–1Appendix J. Evaluation of Integrity Real Time for C

J–1J.1
Introduction

J–1J.2
The Evaluation Criteria:

J–1J.3
The Evaluation

J–1J.4
Conclusions

K–1Appendix K. References

1. Introduction

The Johns Hopkins University Applied Physics Laboratory (JHU/APL) has developed software applications to be used by the New Motor Carrier Management Information System (New MCMIS) being developed for the Federal Motor Carrier Safety Administration (FMCSA). The New MCMIS is the next generation carrier safety information system, which was derived from the mainframe-based legacy MCMIS. Those software applications used for carrier identification make use of the standardization and probabilistic string comparison capabilities of the commercial software product MatchWare™ developed by MatchWare Technologies Incorporated.

Carrier Identification is the process of determining or confirming the USDOT number of a record, (carrier, shipper or other entity) provided to the New MCMIS application depending on how well information on the record agrees with the information stored in the New MCMIS database. The New MCMIS system uses MatchWare-based applications as part of Registration, Crash Report and Inspection Report processing. Proper carrier identification helps prevent duplicate records from being created in the New MCMIS database when used in the Carrier Registration process. For Crash and Inspection report processing, proper carrier identification ensures that these reports are assigned to the correct USDOT number and helps maintain the accuracy of safety data in the New MCMIS database.

The benefits of using applications based on MatchWare for carrier identification are improved accuracy resulting in higher quality matching results and better overall data quality in the New MCMIS database.

MatchWare-based applications for New MCMIS were developed using Microsoft Visual C++ V6.0 with MatchWare Callable Libraries Version 4.1. Vality Technologies Inc. acquired MatchWare Technologies Inc. in July 1999, and replaced MatchWare with a new product referred to as Integrity. JHU/APL tested these applications using the replacement libraries, Integrity Real Time for C Version 3.11.in December 2001. Extensive tests confirmed that all carrier-matching applications developed by JHU/APL, produced identical results when built with the new Integrity libraries. All carrier matching software delivered to FMCSA for the New MCMIS system was built with the Integrity Real Time for C Version 3.11 libraries; Oracle Pro*C provides embedded SQL capability. The Match Handler interface to New MCMIS is written in Oracle PL/SQL.

This document provides information and details about the design of the MatchWare-based applications developed by JHU/APL for the New MCMIS system. In this document, the term MatchWare also refers to the new Integrity products. Appendix J provides details of the method used by JHU/APL for evaluating Integrity Real Time for C as the replacement for the MatchWare Callable Libraries.

This Page Intentionally Blank

2. MatchWare Applications for New MCMIS

[image: image17.wmf]PIPES

Match Handler

PL/SQL

NEW MCMIS

APPLICATIONS

MatchWare

Services

API

Match Handler

Program

MatchWare Callable

Library Functions

Integrity Reatime for

C

Configuration Files

(Dictionary,

Standardization,

Classification,

Pattern,

Rule)

Net * 8

ORACLE DATABASE

REFERENCE

TABLES

The block diagram in Figure 2–1 shows the relationships of the applications that use and provide MatchWare-based services for the New MCMIS System.

Figure 2–1. Block Diagram of MatchWare
Applications for New MCMIS

2.1 Match Handler Program

The Match Handler Program shown in Figure 2–1 is a C++ program and is the core application that provides MatchWare-based capability to the New MCMIS System. The Match Handler Program provides Search and Match services and Standardization services to the New MCMIS system. The program is built using Microsoft Visual C/C+ Version 6.0, Oracle Pro*C version 8.1.6 and Integrity Real Time for C Version 3.11. Appendix E contains details about the Match Handler program.

2.1.1 Search and Match Services for New MCMIS

One service that the Match Handler Program provides the New MCMIS system is to process a query related to the identity of a carrier to determine or help an operator determine which of the following three conditions is true:

1. The information in the query matches exactly one carrier in the New MCMIS database. This is defined as a Confirmed Definite Match.

2. The information in the query may or may not match one or more than one carrier in the New MCMIS database. This is defined as a Potential Match. A Potential Match is resolved either as a Confirmed Definite Match or a Definite Non Match by an operator.

3. The information in the query does not match any carrier in the New MCMIS database. This is defined as a Definite Non Match.

Four data elements are used to establish the identity of a carrier. These elements are USDOT Number, ICC Docket Number, full name and full address. Each of these elements provides a way of defining a unique component of the identity of a carrier and when used together, these four elements provide a composite means of establishing the identity of a carrier.

While the basic carrier identification query contains one name and one address to find a match in the New MCMIS database, the Match Handler program can process queries containing up to two names and two addresses. The ability to process a query with one name and one address forms the core capability of the MatchWare-based search and match engine for New MCMIS. JHU/APL developed a technique to determine the identity of a carrier when up to two names and two addresses are provided in the query by performing just two search operations instead of four searches, thereby reducing in half, the time that would normally be required to process such queries.

The Match Handler Program requires complete name and address information in the query to provide the best matching results. Higher matching speed and accuracy are achieved if the correct USDOT number and/or ICC Docket Number are provided in the query in addition to the required name and address information.

When the Match Handler Program processes a query containing one name and one address, it compares this information with up to two names (Legal and Doing Business As-DBA) and two addresses (Street and Mailing) in the New MCMIS database. The Match Handler program declares a confirmed definite or potential match when the query name and address successfully match any combination of name and address in the New MCMIS database. The difference between a confirmed definite and a potential match is that a confirmed definite match is declared when information in the query matches the information from exactly one USDOT number in the New MCMIS database. A definite non match is declared when no match is found in the New MCMIS database, i.e., confirmed definite match or potential match is not declared.

When a query contains more than one name and/or address, the Match Handler Program processes the query as two distinct name and address pairs; Legal Name with Street Address and DBA Name with Mailing Address. If just one name and two addresses or one address and two names are provided in a query, the Match Handler Program repeats the available name or address to complete the missing data element. The aggregate result for the query is declared by combining the individual results obtained from the two distinct pairs. Appendix I provide details about the method used to combine information and declare results.

New MCMIS PL/SQL applications invoke the Match Handler Program for search and match services through the two functions fnc_search_and match and fnc_carrier_match in the pkg_match_handler package, respectively.

2.1.2 Standardization Services for New MCMIS

The Match Handler Program also provides standardization services to the New MCMIS system. This service allows the New MCMIS system to convert the name and address information for carriers in the New MCMIS database into their corresponding MatchWare keys. These keys are used as indexes for searching or comparing carrier records and are stored in the MatchWare Services Reference Tables in the New MCMIS database.

New MCMIS PL/SQL applications invoke the Match Handler Program for standardization services through the function fnc_standardize in the pkg_match_handler package.

2.2 Match Handler PL/SQL

The interface for New MCMIS PL/SQL programs to the Match Handler Program is through the Match Handler PL/SQL. Match Handler PL/SQL provides a way for the C++ MatchWare programs and the New MCMIS PL/SQL programs to interact with each other. Appendix F provides details about the Match Handler PL/SQL.

2.3 MatchWare Services API

The MatchWare Services API provides the building blocks used by the Match Handler Program for providing MatchWare-based capability to the New MCMIS System. The MatchWare services API was developed using an Object Oriented paradigm. A software developer using the MatchWare Services API is not required to know how to use low level MatchWare library function calls and can design applications based on high level objects and classes suitable for carrier identification applications. Appendix E provides details of the Match Handler Program and the MatchWare Services API.

3. Strategy for Using MatchWare

MatchWare provides two services: Standardization and Matching that are useful for carrier identification applications. These services are available via a set of C function calls through MatchWare Callable Libraries. The strategy used by the MatchWare Services API for utilizing MatchWare for a carrier identification query involves performing a search for likely candidates based on information in the query followed by a matching operation for all candidates found, to determine if any of those candidates match the information in the query. MatchWare provides the means for performing targeted searches and intelligent probabilistic matching through its Standardization and Matching Services. Details of capabilities of MatchWare discussed in this section are available in Reference 3. Specific details of the MatchWare configurations used by the MatchWare Services API are provided in later sections of this document.

3.1 Standardization Services

Searching a database for records based on names or addresses is very difficult for a variety of reasons. The formats of the information in the database and query may be different and the form of words or their spelling may not be the same. Further, a name or address search using a character string is very slow and commonly involves looking up every record in the database before selecting only those records that meet the desired criteria. MatchWare provides standardization services by which names and addresses are broken into distinct components. These standardized components provide an efficient means of searching the database by using names and address information.

In the case of Name Standardization, MatchWare removes commonly used words in business names like “The”, “Of”, “Inc”, “Company”, etc., that do not provide any additional information to establish the identity by name. MatchWare then converts the first five significant words of the remaining words of the name to their root form to eliminate variations in spelling or usage. Words like Robert, Robbie, Bob, Rob would all be converted to the same root word by this process. Finally, MatchWare provides the capability of converting these tokens to SOUNDEX, REVERSE SOUNDEX and NYSIIS forms, which are based on the way a word sounds. These can compensate for spelling errors in a query when searching.

The SOUNDEX algorithm codes tokens phonetically by reducing them to the first letter and up to three digits, where each digit is one of six consonant sounds. This reduces matching problems from different forms of spellings for the same word. The REVERSE SOUNDEX algorithm codes tokens phonetically by reducing them to the last letter and up to three digits, where each digit is one of six consonant sounds. This reduces matching problems from spelling errors where the first few letters spelt incorrectly could result in a matching error. The NYSIIS algorithm converts a name to a phonetic coding of up to six characters. This reduces matching problems from different spellings using a completely phonetic version of the word using letters. The NYSIIS form is better for matching names than just a SOUNDEX or REVERSE SOUNDEX form of the same word.

For Address Standardization, MatchWare provides very well defined components for U.S. and Canadian addresses. These components include details such as “Unit Value” (Number) and “Unit Type” (P.O. Box), “House Number” and “Street Name”, “City” and “Zip Code”. Words in all addresses are converted to standard forms to eliminate differences due to abbreviation and usage (P.O. Box / PO BOX, ST PAUL / SAINT PAUL, Street / St etc) and then if necessary SOUNDEX or REVERSE SOUNDEX conversions are also available to eliminate matching problems due to spelling errors or variations in the spelling.

Standardization Services from MatchWare also provide the means of converting name and address information to distinct fields or MatchWare Keys. The Match Handler Program uses these keys in two ways: some keys are used to index records in the New MCMIS database and are useful for searching, while others keys are used to compare records when matching. Commonly searched name and address component columns in the database are indexed, greatly reducing the time required to locate records based on names and address.

Details of standardization capabilities of MatchWare are available in Reference 3. Specific details of the MatchWare standardization used by the MatchWare Services API are provided in later sections of this document.

3.2 Matching Services

MatchWare provides probabilistic string comparison or more simply “Matching” services, which form the basis for the results provided by the Match Handler Program’s search and match functionality. MatchWare provides a high performance matching engine which can quickly compare a given character string representing a query, with a large number of candidate strings representing possible solutions very quickly. Once matching is completed, the Match Handler Program provides a list of all candidate strings ranked from best to worst, and assigns a score to each candidate that tells how well the candidate matches the query. MatchWare provides means of customizing the rules for comparing character strings.

A common problem when comparing names is that the order of words is frequently changed. When this happens, name comparisons fail or get complicated because of the changed word order. MatchWare solves this problem by tokenizing the words of the carrier name in the query as well as in each candidate and then comparing the tokens in the order that results in the highest name match score.

Another feature of MatchWare is the capability to use different criteria for matching different parts of the character string. Using the capabilities of MatchWare, all four components of the query, the USDOT Number, ICC Docket Number, name and address are compared with the components of all candidate records in a single operation. This results in a very quick and accurate matching operation.

3.3 MatchWare Services API Reference Tables

In order to use the Match Handler Program to process carrier identification queries against the New MCMIS database, standardized components known as keys must be created for all records in the New MCMIS database. These keys must be stored in the MatchWare Services API Reference Tables so that they can be used for searching and matching operations.

The MatchWare Services API Reference Tables must be updated and maintained correctly in order to ensure that the results declared by the Match Handler Program are correct and synchronized with the New MCMIS Carrier Table. Incorrect, duplicate or missing entries in the MatchWare Services API Reference Tables will cause the results declared by the Match Handler Program to be wrong, misleading or confusing. For best results, these reference tables should not contain records that are marked as “Known Duplicates” or “Secondary” in the New MCMIS Carrier Table nor records that contain blank name or address fields.

3.4 Searching Strategy

MatchWare Standardization Services parse carrier names and addresses into MatchWare keys, some of which become indexed keys in the reference database for performing searches. These keys provide the capability to select a wide range of those records from the reference tables that are most likely to yield the best match for a given query. Keys like NYSIIS1 and NYSIIS2 for the carrier name and REVERSE STREET SOUNDEX and CITY SOUNDEX for carrier addresses help compensate for spelling errors and variations since they are based on the way a word sounds instead of its spelling.

The MatchWare Services API employs an additional searching strategy, which is to perform the searches in stages using different keys at each stage. Using different keys and multiple stages prevents an incorrect piece of information in the query or reference database from skewing the results as long as there is enough correct information to provide a correct result. Keys used for a stage define just a small but critical part of the full record and all records in the reference database that match the key are selected during that search stage.

The idea is that if all records satisfying a critical search criteria are selected from the reference tables during a search stage, then the following statements are true:

4. There is no record left in the database that satisfies the search criteria, and

5. It is possible that one or more of the records selected will meet all matching criteria for the given query.

Based on this concept, selection keys and search stages were selected that would quickly and most effectively provide for the selection of records most likely to result in a confirmed match. Keys for each stage were kept mutually exclusive of others to avoid replication of searches. Searches are conducted in stages that are likely to provide the most accurate results most quickly. Every search stage database query is followed by a match operation to determine if the result is a confirmed definite match. If a confirmed definite match is not found, each successive stage widens the scope of the database search and takes longer to perform.

The search stages used are as follows:

6. USDOT Number: The USDOT Number in a query is defined as a key in the MatchWare environment, exactly as it appears in the query without any processing by MatchWare. When the USDOT Number is provided and other pieces of information (ICC Number, name and address) on the query are correct, this search stage produces the quickest and most accurate results.

7. ICC Docket Number: The ICC Docket Number is also defined as a key in the MatchWare environment. When the USDOT Number is not provided or is incorrect and fails to produce a positive result, the ICC Number, with the correct name and address in the query, produces positive results as quickly and accurately as the USDOT Number.

8. Name Search: When both USDOT Number and ICC Number fail to produce a positive identification, carrier name is the next most likely component that could result in a match. The keys used for name searches are the NYSIIS values of WORD1 and WORD2 from the carrier name, not WORD1 or WORD2 itself. While the NYSIIS1 and NYSIIS2 fields provide a means for performing an indexed search by name, the time required for such a search depends on how often a NYSIIS value occurs in the reference database. Commonly used names could occur in the reference database 50,000 times or more, which results in a very long search, while uncommon names result in very quick searches.

The objective of the Name Search Stage is to select all records from the database that meet both, (union of) the NYSIIS1 and NYSIIS2 search criteria. This ensures that if the search fails, there are no records in the database that could possibly match the name in the query. However, there are certain thresholds of counts of NYSIIS1 and NYSIIS2 beyond which searching records for the union of both NYSIIS1 and NYSIIS2 is impractical. To overcome this problem, this search stage is performed using the following search variations:

a. NYSIIS1 union NYSIIS2 search if counts for both are low.

b. NYSIIS1 search if the count for NYSIIS2 only is very high (e.g.Word2 is “TRUCK”)

c. NYSIIS2 search if the count for NYSIIS1 only is very high (e.g.Word1 is “JOHN’S”)

d. (NYSIIS1 and NYSIIS2) union (NYSIIS2 and NYSIIS1) searches if counts for both NYSIIS1 and NYSIIS2 are very high. The union of two Boolean conditions is used in this case to compensate for the possible switch of Position of NYSIIS1 and NYSIIS2 in the query or the reference database.

The values of low and high counts were determined by analyzing the data in the reference tables. The low counts cover over 94% of the records in the reference database and take less than thirty seconds to complete. The high counts eliminate those searches that would take over a minute but in many cases up to five minutes to complete.

9. Address Search: If the previous stages fail to produce a positive identification, it means that either information in the previous stages was missing or provided incorrectly. In such cases, address information could help correct searches led astray by misleading information in the USDOT, ICC and Name Stages. MatchWare standardization produces many keys for carrier address. In order to ensure that key based address searches are wide enough to cover all relevant records yet focused towards address information in the query, specific combinations of keys are used. The state component of an address by itself is a poor choice because of the high number of records per state in the New MCMIS database. Zip Code information in the New MCMIS database has been found to be outdated and therefore relying entirely on that key could cause misleading results. The keys found to provide the best overall results for the MatchWare Services API are a combination of REVERSE STREET SOUNDEX, CITY SOUNDEX and STATE when the address contains a street address or a UNITVALUE, CITY SOUNDEX and STATE when the address is a Post Office box or other container like Post Office Bag or Mail Box. REVERSE STREET SOUNDEX is selected because it picks up all streets ending in the same sound, to allow for variation in spellings for street names. Even though the MatchWare keys UNITVALUE and UNITTYPE are normally paired, UNITTYPE is not included in the second type of search because often, values that are used in the query and New MCMIS database for that component of the address are inconsistent with each other.

Though address searches can be expensive in terms of processing time, they can provide excellent results because they ensure that all carrier records with a particular address defined by street, city and state or P.O. Box Number in a given state have been considered to establish the identity of a carrier.

10. Combined Name and Address search: When all the previous four stages failed to produce a confirmed match, a combination of name and address is used as a last resort to obtain a result. The combination used is NYSIIS and STATE, using either 1) the NYSIIS key that was not used in the Name search stage or 2) the NYSIIS key from the name search stage with lowest count. This is the most expensive stage in terms of processing time; however, it ensures that all reasonable steps are taken to establish the identity of the carrier.

3.5 Matching after Searching

As stated before, each search stage described above is followed by a match operation to determine whether the records resulting from the search result in a definite confirmed match. During each search stage candidate records are selected from the MatchWare Services API Reference Tables based on one component of the query. However, all four components --USDOT Number, ICC DOCKET Number, name and address – are retrieved for the candidate records from the reference tables.

The match operation for each stage compares all four components of each candidate record with information in the query. For example, in the USDOT stage, although records are selected from the reference database based on just one component the USDOT number, the match operations compare all four components – USDOT Number, ICC DOCKET Number, name and address. This process, known as blocking in MatchWare terminology, provides a “degree of freedom” in selecting candidates during the search stage but ensures full comparison while deciding which records from among all the candidates match the information in the query.

Except for the USDOT Number and the ICC Docket Number, the keys used to search for candidates are different from the keys used to match or compare candidates with the information contained in the query. By their definition, the USDOT Number and the ICC Docket Number are keys for searching as well as critical information to confirm the identity of a carrier.

For name searches, the NYSIIS values of WORD1 and WORD2 are ideal search keys because they result in a larger number of carrier records with a wide variation of forms of the same names to be retrieved by the search. To compare the candidates found by the search with the name information in the query, however, the standard form of WORD1, WORD2 … WORD5 must be used. This is because using NYSIIS1 and NYSIIS2 for matching will produce the same results as the search. Using the actual WORD1 .. WORD5 keys will ensure that matching candidate name strings are close to the original name string in the query. This is also the reason why the full name must be provided in the query to ensure the best results from MatchWare.

Keys used for address searches, REVERSE STREET SOUNDEX, CITY SOUNDEX and STATE or UNIT VALUE, CITY SOUNDEX and STATE are ideal for retrieving the most likely records based on address. However, to ensure that the address on the records compare closely with the address on the query, the keys used for matching are HOUSENUM, STREETNAME, UNIT TYPE, UNIT VALUE, CITY, STATE and ZIPCODE. This ensures a closer match of the candidate records with the query when the addresses are compared.

When using MatchWare, any search must be followed by a match operation in order to utilize the capabilities of MatchWare in a meaningful way. Without the match operation, a search using MatchWare keys alone would be no better than and could be replaced by a database search using the equivalent SOUNDEX function.

3.6 Scores and Results

Upon completion of the search and match operation, MatchWare returns an ordered list of all candidates ranked from best to worst with a score assigned to each candidate. The score is based on rules and settings specified in the MatchWare configuration files. MatchWare does not make a determination as to whether or not a candidate is a definite match: it just provides a score that is based on a comparison of the information in the candidate record with the information in the query.

Each component of the candidate record, USDOT Number, ICC DOCKET Number, name and address contributes to the combined score that MatchWare assigns any candidate. Better matching between each component and the equivalent information in the query results in a higher score for that component; a mismatch results in a negative score. When a component is missing in either the query or the candidate record, MatchWare assigns no score to that component, thus reducing the maximum score assigned to that candidate record. For output reporting, MatchWare only generates the overall score for each candidate record, not the score associated with each record component. Based on analysis conducted by JHU/APL, the breakdown of maximum possible MatchWare scores for the current configuration are as follows:

Table 3–1.
MatchWare Scores by Component

	Element
	Maximum
Possible
Score
	Maximum
Deduction for
Disagreement

	USDOT Number
	2.00
	-0.58

	ICC Docket Number
	2.00
	-0.58

	Name
	13.28
	-13.28

	Address
	17.50
	-10.04

	Total
	34.78
	-24.48

Based on the score assigned to a candidate record, the MatchWare Services API interprets the result to determine whether the result of a query is a confirmed definite match, potential match or definite non match.

Table 3–2.
Match Result Based on Score

	Match Result
	MatchWare Score Threshold

	Definite Match
	23.00 – Max Score

	Potential Match
	11.00 – 23.00

	No Match
	<11.00

This Page Intentionally Blank

4. Carrier Search and Match Algorithm

Applications that use MatchWare depend on the total MatchWare score of a candidate to declare a result. The total MatchWare score is based on the degree to which all pieces of information in a candidate record agree with corresponding pieces of information in the query. If the total MatchWare score for any candidate is below the definite match threshold, then normally, the result is not a definite match.

The FMCSA has provided a set of business rules that define how the Match Handler Program should declare carrier identification results. Some of these rules dictate that a candidate be declared a definite match based on partial agreement of information, when the total MatchWare score for that candidate could be below the definite match threshold. Other rules require that candidates whose total MatchWare Score is above the definite match threshold not be declared a definite match but a potential match instead.

The Carrier Search and Match Algorithm used in the MatchWare Services API has been developed with the objectives of using features of MatchWare to provide accurate carrier identification capabilities to New MCMIS and other FMCSA applications. The algorithm blends the MatchWare approach of staged blocking and searching to establish the identity of carriers with the FMCSA’s business rules for declaring results. Search stages used by the algorithm have been selected to provide an optimized matching outcome while maintaining high speed query processing. In order to comply with FMCSA requirements of using their business rules for declaring results, JHU/APL has developed techniques for using the capabilities of MatchWare while implementing those rules

This section provides details of the business rules defined by the FMCSA for declaring matching results and their impact on Carrier Search and Match Algorithm. Appendix D provides details of the Carrier Search and Match Algorithm used by the Match Handler Program.

4.1 FMCSA Business Rules

4.1.1 Partial Information Used for Establishing Identity

For Crash and Inspection report processing, the FMCSA requires that a candidate must be declared a definite match even when the total MatchWare score is below the definite match threshold. FMCSA has defined rules by which these declarations are to be made. According to these rules, if two distinct elements in a candidate record agree with information in the query, the candidate record can be declared a confirmed definite match. The reason behind these rules is to address the case when information in a query and in the New MCMIS database does not completely agree for operational reasons. For example, the address for a carrier may have changed and be reflected in the paperwork and the side of the truck but not updated in the MCMIS database or vice versa. In such cases, application of FMCSA business rules would allow for the automated processing of Crash and Inspection reports instead of requiring potential match resolution by a human operator.

A summary of the rules defined by the FMCSA for declaring definite matches and their order of priority is provided in Table 4–1 below. Appendix C contains the document provided by FMCSA defining these rules.

Table 4–1.
FMCSA Rules for Confirming Matches
Using Partial Information

	Priority
(Rule)
	USDOT
	ICC
	Name
	Address
	Maximum
Contribution to
Score

	1
	Match
	Match
	
	
	4.0

	2
	Match
	
	Match
	
	15.28

	3
	
	Match
	Match
	
	19.50

	4
	Match
	
	
	Match
	15.28

	5
	
	Match
	
	Match
	19.50

	6
	
	
	Match
	Match
	30.78

4.1.2 Intrastate Carriers

When processing INTRASTATE Inspection reports, the directive provided by the FMCSA is that an Intrastate Inspection report is never to be classified a Potential Match. Rather, it must be declared a Confirmed Definite Match or a Definite Non Match based on a successful match or lack thereof to USDOT Number or ICC Docket Number, respectively.

4.1.3 Inactive Carriers

Prior to December 2001, the FMCSA required MatchWare-based applications developed by JHU/APL to change all Confirmed Definite Matches of INACTIVE carrier records evaluated during Crash and Inspection Report processing to Potential Matches. This was done to ensure those records would be manually reviewed by an operator for final match resolution.

In December 2001, the FMCSA changed the requirement to support automated declaration of INACTIVE carriers as Confirmed Definite Matches. This automated declaration was permitted only when a given INACTIVE carrier was the only candidate confirmed as a definite match and had the same USDOT Number of ICC Docket Number specified in the query.

4.1.4 Queries with USDOT or ICC Number

The FMCSA requires records containing a USDOT Number or ICC Docket Number, which are evaluated during Crash or Inspection report processing, be declared a Potential Match if a Confirmed Definite Match can not be established, even when a MatchWare score would normally indicate Definite Non Match status.

4.2 Impact on the Carrier Search and Match Algorithm

Application of the business rules defined by the FMCSA could lead to several problems:

11. In all cases where either the Name or Address component is present yet excluded from consideration for the matching operation, the maximum MatchWare score for that report cannot reach the Definite Match Threshold. In addition, the MatchWare score will be further reduced if mismatches in other elements are encountered.

12. Applying these rules often results in conflicting confirmed matches due to the nature of the information provided on some types of queries. For example, in a particular query, the ICC Docket Number and name information could identify as a match, a record that is different when compared with the record that the USDOT Number and address information have identified as a match in New MCMIS database.

To solve the first problem, MatchWare applications for New MCMIS were designed to integrate the FMCSA rules with MatchWare processing. When the FMCSA rules are applied to declare a Confirmed Definite Match based on partial information, the candidate that is declared as the Definite Match does not typically get a high enough MatchWare score to use the normal thresholds for declaring the result. JHU/APL has developed a method by which the low scores that a candidate gets when the FMCSA rules are applied can be mapped to normal MatchWare thresholds. This Mapping of scores allows a single uniform scale by which results can be declared regardless of whether the rules provided by the FMCSA are applied.

To mediate the second problem, JHU/APL asked the FMCSA to provide priority rules for breaking the tie and deadlock when the same query resulted in a Confirmed Definite Match with two different records in the New MCMIS database. See Table 4–1 above for the priority rules defined by the FMCSA for declaring results based on partial information. Appendix D provides details of the algorithm developed by JHU/APL.

Once the individual MatchWare component scores are determined, FMCSA rules can be applied in terms of MatchWare scores. When rules are applied, an inherently low score can be mapped to a normalized MatchWare score. This provides a method by which a common threshold is used to declare results when either standard MatchWare processing or FMCSA business rules are used as a basis for processing a query. This is critical because very often, a query could yield several different results depending upon which method is applied. The algorithm used by the MatchWare Services API derives the best possible results and then decides the final outcome based on priorities defined by the FMCSA rules. This method ensures that a complete search is conducted before declaring a match instead of stopping at the first match, which might not result in the correct carrier. FMCSA rules are applied whenever applicable, when normal MatchWare processing does not result in a confirmed match for a query.

This Page Intentionally Blank

5. MatchWare / Integrity Configuration Files

MatchWare uses a set of configuration files for establishing the MatchWare Standardization and Matching environment. In 1998, MatchWare Technologies Inc., created customized configuration files for the FMCSA MatchWare applications SAFETYNET10 and SAFETYNET 2000. Enhanced versions of these files form the basis for the MatchWare configuration files used for New MCMIS. JHU/APL has enhanced these files based on information obtained from MatchWare Technologies Inc to correct problems with the original files and to make them suitable for use with the larger name and address fields required by the New MCMIS system.

Integrity, the replacement product for MatchWare, also uses a similar but different set of configuration files for establishing its Standardization and Matching environment. However, configuration files originally created for MatchWare can also be used with Integrity.

During the development of the Match Handler Program for New MCMIS, extensive testing was conducted to ensure that the enhanced configuration files produce correct results when compared with the results from the MatchWare applications for Legacy MCMIS. This testing has also established that these customized configuration files produce identical results when used with either the MatchWare Callable Libraries or the Integrity Real Time for C libraries.

For the Match Handler Program, a dictionary file CMCOMBINED41. DCT defines keys for the MatchWare environment. Information from the query is first formatted into a 228 Character “Standardization Record” and parsed into the MatchWare components, “Name”, “Geocode” and “Place” by the specification in the standardization file CMATCH41.STN. The three components of the query, “Name”, “Geocode” and “Place” are then standardized and converted to keys for the MatchWare environment by the standardizer. The dictionary file CMCOMBINED41.DCT and individual pattern and classification files for “Name”, (CMCOMPANY.PAT, CMCOMPANY.CLS) “Geocode”, (CMGEOCODE.PAT, CMGEOCODE.CLS) and “Place” (CMPLACE.PAT, CMPLACE.CLS) define the MatchWare keys that will be generated.

The rule file APLMATCH41.RUL defines a 563 character “Match Record” as well as the rules for matching candidates drawn from the reference database with the data in the query. One Match Record is built with keys from the reference database for every candidate record selected during the search. The stage is set for matching the candidates from the reference database with the information in the query by loading all “Match Records” into the MatchWare environment. MatchWare compares all candidates with the query by comparing keys according to the rules in the rule file. The score that is assigned by MatchWare to a particular Match Record depends on the match quality as defined in the rule file.

Appendix B contains the Standardization, Dictionary and Rule Files used to establish the MatchWare environment for the New MCMIS system.

This Page Intentionally Blank

Appendix A. MatchWare Services API Reference Tables

This Page Intentionally Blank

MatchWare Services API Reference Tables

[image: image3.png]e _auar

\dotnum VARCHARZE) <o

b “eciene RevermeETax VAo

This Page Intentionally Blank

Appendix B. MatchWare Configurations and Settings

This Page Intentionally Blank

Standardization File CMATCH41.STN

;

; STANDARDIZE file Adapted from Scientex [A] : SEARCH.STN

; Is cmatch41.stn

; References cmcombined41.dct

;

RECORD 228

INTERACTIVE

TYPE ASCII

;

STANDARDIZE COMPANY (21-140)

PROCESSFILE COMPANY CMCOMPANY CMCOMBINED41

STANDARDIZE GEOCODE (141-190)

PROCESSFILE GEOCODE CMGEOCODE CMCOMBINED41

STANDARDIZE PLACE (191 25) (216 2) (218-227)

PROCESSFILE PLACE CMPLACE CMCOMBINED41

;STRIPLIST "-()&/#<>;:\".\' "

STRIPLIST "_-()&/#<>;:\".\\' "

SEPLIST " "

Dictionary File CMCOMBINED41.DCT

\FORMAT\ SORT=N

;

; CID file match key

;

QN C 12 S; Query Number

US N 8 S; USDOT Number

CN C 120 S; Carrier Name

CA C 50 S; Carrier Address

CC C 25 S; Carrier City

CS C 2 S; Carrier State

CZ M 6 S; Carrier Zip /*Type is mixed for Canadian Alpha Zips*/

;CE M 3 S- 120 Carrier Zip Extension - which is not used - space holder

CE M 4 S; ZipCode Extension

IN C 1 S; Interstate Marker - Not Used

IC N 6 S; ICC Number

AS C 1 S; Activity Status

NT C 1 S; Name Type

AT C 1 S; Address Type

NW C 1 S; NWords - Number of words

W1 C 30 S; Company1 - Word 1 "Manitoba"

W2 C 30 S; Company2 - Word 2 "Council"

W3 C 30 S; Company3 - Word 3 "Organic"

W4 C 30 S; Company4 - Word 4 "Vegetable"

W5 C 30 S; Company5 - Word 5 "Farmers"

DV C 15 S; Div - Division or misc info

N1 C 8 S; NYSIIS1 - NYSIIS of word 1

N2 C 8 S; NYSIIS2 - NYSIIS of word 2

BT C 4 S; BranchType - Branch or outlet type

BR M 6 S; BranchVal - Branch or outlet identification

HN N 10 S; HouseNumber - 1

HS C 6 S; HouseSuffix - 11 "A", "1/2", etc.

PD C 2 S; PreDirection - 17

PT C 4 S; PreType - 19

SN C 48 S; StreetName - 23

ST C 4 S; SuffixType - 51

SQ C 3 S; 300 SuffixQual - 55 (old, ext, byp)

SD C 2 S; SuffixDir - 58 Suffix direction

UT C 6 S; UnitType - 60 Unit designation type

UV C 6 S; UnitValue - 66 Unit designnation value

XS C 8 S; StrSoundex - 72 Soundex of Street Name

XR C 4 S; StrRsoundex - 80 Reverse Soundex of street name

CT C 25 S; CityName - 1 City name

XC C 4 S; CitySndx - 26 Soundex of City name

SA C 2 S; State - 30 State Abbreviation

ZP M 6 S; Zip - 32 Zip code

Z4 N 4 S; Zip4 - 38 Zip4 add-on code

VR C 1 S; Valid Record Marker

CY C 150 S;For array matching

Rule File APLMATCH41.RUL

;
APL Match Rule file for full Match aplmatch41.rul

; Rules file for authority file

;
Matchware V4.1 changed CY to W1

VAR USDOT 1 8 S;X

VAR CarrName 9 120 S

VAR CarrAddr 129 50 S

VAR CarrCity 179 25 S

VAR CarrState 204 2 S

VAR CarrZip 206 10 S

VAR InterState 216 1 S

VAR ICC 217 6 S;X

VAR Status 223 1 S

VAR Legal_vs_DBA 224 1 S

VAR Official_vs_Address 225 1 S

VAR NWords 226 1 S

ARRAY_ADJ Company 227 30 5 S NWords

VAR Div 377 15 S

VAR NYSIIS1 392 8 S;X

VAR NYSIIS2 400 8 S;X

VAR BRType 408 4 S

VAR BRVal 412 6 S

VAR HouseNum 418 10 S

VAR HouseSuf 428 6 S

VAR Predir 434 2 S

VAR Pretype 436 4 S

VAR StreetName 440 48 S

VAR SuffixType 488 4 S

VAR SuffixQual 492 3 S

VAR SuffixDir 495 2 S

VAR UnitType 497 6 S

VAR UnitVal 503 6 S

VAR StreetSndx 509 8 S;X

VAR RevStreetSndx 517 4 S;X

VAR City 521 25 S

VAR CitySndx 546 4 S;X

VAR State 550 2 S

VAR ZipCode 552 6 S;X

VAR ZipCodeExt 558 4 S

VAR ValidRecord 562 1 S

MATCH CHAR US USDOT 0.40 0.10

MATCH NUMERIC IC ICC 0.40 0.10

; First try match on the array of company name

MATCH ARRAY UNCERT W1 5 Company 0.9999 0.0001 700.00

; Second try match on the array of company name

;MATCH ARRAY UNCERT CY 5 Company 0.9999 0.0001 700.00

; Second try match on the address

MATCH NUMERIC HN HouseNum 0.60 0.10

MATCH UNCERT SN StreetName 0.70 0.10 700.00

MATCH UNCERT UT UnitType 0.60 0.10 700.00

MATCH UNCERT UV UnitVal 0.60 0.10 700.00

MATCH UNCERT CT CarrCity 0.90 0.10 700.00

MATCH UNCERT ZP ZipCode 0.70 0.10 550.00

;Changed from 900 MATCH UNCERT ZP ZipCode 0.70 0.10 900.00

;MATCH CNT_DIFF Z4 ZipCodeExt 0.70 0.10 1

MATCH CHAR CS State 0.20 0.10

CUTOFF 2.0

;CUTOFF 0.0

Appendix C. FMCSA Rules for Declaring Matches

This Page Intentionally Blank

tc "CARRIER SEARCH SYSTEM ALGORITHM" \f cCARRIER SEARCH SYSTEM ALGORITHM

MATCH SCORING ON CARRIER ID INFORMATION
Name:

70 points

Address:
 5 points

City:

 8 points

State:

 8 points

Zip Code:
 8 or 9 points (depending on length of code)

USDOT #:
21 points

ICC #:

21 points

DEFINITE MATCHES
90 points or more are generally required for a definite match of the Census to the inspection/accident data, e.g.:

*
Same Carrier Name, Address, City & State

*
Same Carrier Name & USDOT Number

*
Same Carrier Name & ICC Number

Exceptions that are also considered matches are:

*
Same USDOT Number & full address (Address, City, State & Zip Code)

*
Same ICC Number & full address

*
Same USDOT Number & ICC Number

This Page Intentionally Blank

Appendix D. Carrier Search and Match Algorithm

This Page Intentionally Blank

Introduction

The Carrier Search and Match Algorithm is designed to accept a carrier query and to declare a result along with, potentially, a list of candidates. The Carrier Search and Match Algorithm uses a combination of sequential, intelligent database queries, MatchWare library functions, adjustments to the MatchWare results, and application of rules from FMCSA to declare its result as expediently and as accurately as possible.

The goal of the algorithm is to locate a carrier in the New MCMIS database given a carrier “query,” which consists of a name and an address, and optionally a DOT and/or ICC number. SQL queries are used to locate “match candidates,” and MatchWare, FMCSA rules, and heuristics, developed by JHU/APL, are used to score the candidates. The algorithm declares one of the following three possible outcomes for every query:

13. Confirmed Definite Match where the algorithm declares that one carrier from the New MCMIS database definitely matches the carrier in the query;

14. Potential Match where the algorithm suggests one or more carriers from the New MCMIS database, as potential matches to the carrier of the query; and

15. Definite Non‑Match which guarantees that no carrier in the New MCMIS database matched the carrier of the query.

Since the reference tables are populated with over three-quarters of a million carriers (and growing), it would be wholly impractical to examine every carrier in the database for each query. The algorithm solves this problem by iterating through a series of targeted, indexed database queries, or “search stages”.

As each search stage is executed, all returned rows are included in the candidate pool. During the matching process, MatchWare compares all the candidates to the carrier in the query and assigns each candidate a score. Then, FMCSA-mandated rules and JHU/APL heuristics are applied, which may modify the scores originally assigned by MatchWare.

The application of the rules and heuristics affect the results obtained from a search stage in one of the following ways:

· A candidate, considered a definite match based on the MatchWare score, continues to be a definite match after the application of all rules and heuristics. When a search stage returns a definite match in this manner, the algorithm has achieved its goal and can declare a result. In this case, none of the remaining search stages are performed

· A candidate who is a definite match based on the MatchWare score is no longer a definite match. Instead, after applying the rules and heuristics the candidate becomes a potential match following a correction for “false positive definite match”. The algorithm continues the search for a definite match in this case.

· A candidate that was not considered a definite match, becomes one by application of the rules and heuristics. The algorithm does not discontinue the search for a better candidate when it “promotes” a candidate by the application of one of these heuristic or rules.

· A candidate, not considered a potential match, gets promoted to that status after the application of the rules and heuristics.

When a search stage results in a definite match as in case (1) or after all search stages are performed, the algorithm merges the results from all search stages that were completed and declares a result of Confirmed Definite Match, Potential Match or Definite Non Match based on the collective results from those stages.

Database Searches

The Carrier Search and Match Algorithm uses a set of pre-defined SQL queries to search the database for candidates. Each query performs the same three-table join and returns the same columns: they differ in the condition expressed by their “where” clauses. Each query’s search condition, or “where” clause, consists of one or more equality matches on indexed columns. See the section later in this appendix for details of the searches.

MatchWare

MatchWare is used to standardize carriers and to rank candidates against a query. Since MatchWare is so fundamental to the Carrier Search and Match Algorithm, a minimum understanding of MatchWare functionality is required. Therefore, a summary of that functionality is provided below.

The Carrier Search and Match Algorithm utilizes several functions from the MatchWare callable libraries in its processing. They are:

· Standardize. The query is sent to the MatchWare standardizer, which returns the standardized values. Appendix B provides details of the standardization rules and all the keys used by MatchWare applications for New MCMIS. Calls to the standardizer also initialize an internal MatchWare match key. All candidates are subsequently matched against this match key.

· Add Candidate. Candidates returned from database searches are inserted into the MatchWare environment as candidates using this function.

· Match. MatchWare compares each candidate against the match key and assigns it a score, or weight.

· Fetch Candidate. After matching, the candidates are fetched one-by-one from the MatchWare environment along with their total MatchWare score. MatchWare ranks the candidates in descending order by their score.

MatchWare assigns a score to each candidate it matches against the query. In addition, the algorithm determines the numerical contribution each component of the query makes to the overall score. The way the algorithm uses these score is critical to understanding how the algorithm works. Details and terminology regarding MatchWare scores and how the algorithm uses those scores is provided below.

· The overall, or composite score that MatchWare assigns a candidate is composed of four component score contributions based on USDOT Number, ICC Docket Number, name, and address.

· As part of matching process, the algorithm obtains not only the composite score, but also the four component scores for USDOT number, ICC Docket Number, name and address.

· JHU/APL has heuristically determined the threshold value that a candidate’s composite score must equal or surpass to be considered a Confirmed Definite Match. It has likewise determined the similar threshold for a Potential Match. Below that latter threshold, a candidate is considered a Definite Non Match.

· MatchWare uses a step-function to assign the component score values. For example, the component score for the USDOT Number will always be assigned a value of 2.0 when the candidate USDOT Number matches the query’s, -0.58 when it does not match the query, and 0.0 when the query has no USDOT Number.

This consistency enables the algorithm to analyze the quality of matches in detail, and based on that analysis, heuristically adjust the weights in some circumstances.

Rules and Heuristics

FMCSA has mandated that any carrier candidate whose USDOT Number or ICC Docket Number matches that of the query should get special consideration, irrespective of its overall MatchWare score. (For the purpose of this discussion, such a carrier will be referred to as a “DOT/ICC match”). If a DOT/ICC match candidate was found, the processing of remaining candidates in the results list is affected as described below. The Rules defined by the FMCSA are discussed in Section 4 of this document and summarized in Table 4–1. JHU/APL has developed a set of heuristics that allow the algorithm to apply the FMCSA rules to candidate records by adjusting the scores assigned to these records on a scale consistent with the one used by MatchWare. By following this strategy, the heuristics allow the algorithm to use a common and consistent strategy for declaring matching results regardless of whether the FMCSA rules are applied or not. The following general rules apply:

· If a DOT/ICC match candidate is found and the composite MatchWare score for that candidate is at or above the threshold to be considered a Confirmed Definite Match, no more candidates are considered for rule-based score alteration.

· Due to the application of business rules mandated by the FMCSA, candidates that can be considered Confirmed Definite Matches fall into two categories MatchWare Definite Candidates and Rule-based Definite Candidate or Heuristic Definite Candidates.

· A candidate that is assigned a composite score by MatchWare that is at or above the definite-match threshold is referred to as a MatchWare Definite Candidate. Likewise, one that MatchWare assigned a potential-match level score is referred to as a MatchWare Potential Candidate.
· A candidate with a combine MatchWare score below the definite match threshold may have its score “promoted” by the JHU/APL algorithm to a value that is above that definite match threshold due to the application of business rules specified by the FMCSA. Such a candidate is referred to as a Rule-based, or heuristic definite.

· A candidate with a composite MatchWare score below the potential match threshold may have its score “promoted” to a value above that threshold due to the application of a business rule specified by the FMCSA. Similarly, a candidate with a composite MatchWare Score above the definite match threshold may have its score demoted to a value below the definite match threshold but above the potential match threshold. Such Rule-based promotions – or demotions – can result in a candidate being a Rule-based potential, or Heuristic potential.
· If a DOT/ICC potential match candidate was found, rules provided by the FMCSA require that any candidate with a different USDOT Number or ICC Docket Number than that of the DOT/ICC potential match candidate not over ride that candidate as a definite match unless its name and address match the query at least as well as the DOT/ICC candidate’s name and address match the query. This can affect both promotions and demotions.

· FMCSA has provided instructions on adjudicating conflicts when more than one of its criteria for declaring a definite match candidate has been satisfied. See Table 4–1 for a summary of these instructions.

Algorithms

The Carrier Search and Match Algorithm combines the database searches, MatchWare calls, and heuristics in a complex algorithm. A description of that algorithm follows, starting with the highest-level function, Process Query. Each algorithm description corresponds to a separate Visio diagram, included later in this appendix.

Process Query (1.0)

1.1. Input. The carrier query input to the carrier Search and Match Algorithm must consist of a full name and full address, and optionally a USDOT number and /or an ICC Number. The input should not contain a partial name or address because the underlying MatchWare software uses a probabilistic algorithm to determine which, if any, carriers definitely match the query. The Carrier Search and Match Algorithm is not designed to function as a search engine and therefore returns numerous poor-quality results when given partial names and / or addresses.
1.2. Standardize

1.2.1. The Algorithm passes the input from above to the MatchWare standardizer function, with a two-fold result. Some of the standardized fields returned are used in targeted database searches for candidates. (The candidates are subsequently sent to MatchWare for matching). Additionally, standardizing has the side effect of initializing the MatchWare environment with the information in the query as the “match key” – the carrier information against which all candidates will be compared.

1.2.2. The Carrier Search and Match Algorithm analyzes the standardizer output, setting processing flags for the present query based on the presence or absence of values in specific standardized fields. These flags affect the sequence of database searches. For example, the search that queries on REVERSE-STREET-SOUNDEX, CITY, and STATE will not be performed if the query contains a post office box.

1.3. Step through sequence of database searches. The Carrier Search and Match Algorithm has an ordered progression of database queries, or searches, that it performs until either no searches are left to perform or the criteria for terminating searching for a better candidate has been met.

1.4. Determining whether or not to perform a search at any given step of the progression, the algorithm analyzes the make-up of the query itself (see 1.2.2, above) as well as the number of candidates that would be returned by the search. The algorithm is designed to execute a search that returns fewer candidates before executing a more time-consuming search that returns more candidates (in orders of magnitude).

1.5. Search and Match. Search the database based on a given query and match the results against the carrier query with MatchWare. Adjust the MatchWare scores if necessary and apply FMCSA rules to further adjust the scores. Sort the results list in descending score order.

1.6. If MatchWare definite found, then do not perform any additional searches . Otherwise proceed with the next database search in the sequence (Step 1.3 above)

1.7. Merge results. When one of search loop terminating conditions has been satisfied, merge each database search’s results list (if any candidates were found) into a single results list. In the process, whenever two candidates are found with the same USDOT Number, retain the candidate with the highest score and discard the other.

1.8. Declare the query result. The following criteria are used.

1.8.1. Confirmed Definite match
1.8.1.1. Only one carrier candidate definitely matches the carrier in the query, as reflected by either its composite MatchWare score or by its “promoted” score based on application of a rule provided by the FMCSA.

1.8.1.2. Normally, carriers must be active to be considered definite matches. However, if a query has just one definite match candidate whose DOT Number or ICC Docket Number matches the value in the query, then the candidate can be declared a Confirmed Definite Match even if it is an inactive carrier.

1.8.2. Potential match. (Note, in all cases that the Carrier Search and Match Algorithm declares a query a potential match, a human operator must inspect the query and its candidates and either declare the query a definite match by selecting one of the candidates or else declare the query a Definite Non Match).

1.8.2.1. A single potential match candidate exists. In other words, the carrier candidate has some degree of similarity to the query, but an insufficient score to be declared a confirmed definite match.

1.8.2.2. Multiple potential match candidates exist. Again, all the carrier candidates have some degree of similarity to the query, but no candidate has a combined score that is high enough for that candidate to be declared a definite match. This condition is known as “multiple potentials.”

1.8.2.3. Two or more definite match candidates with active status exist: this condition is known as “conflicting definites”.

1.8.2.4. A single, non-DOT/ICC definite match candidate that has inactive status.
1.8.2.5. Multiple definite match candidates (irrespective of search type) that have inactive status.
1.8.3. Definite Non Match: no carriers were found which combined scores that are high enough to be considered even a potential match.

1.9. Output: The output of the Process Query function is a query result declaration and a candidate list. Note that queries with non-match result may have empty results lists.

Search and Match (1.5)

1.5.1 Search type (input). All Carrier Search and Match Algorithm database queries search for equality matches on indexed columns using one of several predefined searches. See Database Searches later in this appendix for the details about these searches. Each invocation of the Search and Match function takes one of these search types and the standardized values from the query as an argument.
1.5.2 Standardized query values (input). Used as run time “bind” variables in the pre-defined database searches.
1.5.3 Query Database. The reference database tables are searched for candidates using the search type specified and the standardized values supplied. The SQL query returns column values that MatchWare requires for matching against the query.
1.5.4 Load candidates into the MatchWare Matching Environment. MatchWare can accept an unlimited number of candidates to match against the query that has previously been loaded into the match key.
1.5.5 Match. Once all candidates have been loaded into the MatchWare environment, a single function call matches all candidates against the match key and results in the assignment of the combined MatchWare score to each candidate. Subsequently, candidates are retrieved from the MatchWare matching environment for evaluation by the algorithm in the descending order of combined MatchWare score (best candidates first). The Carrier Search and Match Algorithm places each candidate into a results list for the current search, and continues retrieving candidates until the scores for the candidate retrieved drop below a pre-defined cut off threshold. All candidates with scores below the cut off threshold are discarded because such a low score implies that there is no match between the candidate record and the query.
1.5.6 Adjust name weights. Sometimes the score that MatchWare assigns to the name component of a candidate can be misleadingly high. This happens when the number of words in the query and candidate names differs, and the words in shorter name match very well with words in the longer name. For example, if the query had four words and the candidate had two, and they matched exactly on those two words, MatchWare would score a perfect match on name. However, the algorithm is designed to match based on the full name. Therefore, the algorithm will apply a correction to the name component of the score and lower the combined score as well to reflect the fact that the name matches on just two out the possible four words.
1.5.7 DOT or ICC Candidate? If DOT or ICC Candidate found, apply FMCSA rules for DOT or ICC Candidates to comply with directives issued by the FMCSA. This ensures that DOT or ICC candidates with low MatchWare scores are included in the final list of candidates and not prematurely eliminated because of low MatchWare scores
1.5.8 Set best name and address weights. Scores for each of the four components that make up the composite MatchWare Score – USDOT Number, ICC Docket Number, name and address for each candidate record are determined by the algorithm during this step by using a special process developed by JHU/APL. In this step, the algorithm assigns the candidate records the best component score based on the closeness of match with the query. These component scores are needed for applying the FMCSA rules.
1.5.9 Apply heuristics. To apply the FMCSA rules for declaring matches, apply JHU/APL heuristics to adjust a candidate’s score under various circumstances. See the following Apply Heuristics section for details of this algorithm. After applying these rules to the scores, the algorithm re-sorts the list.
Apply Heuristics (1.5.9)

1.5.9.1. Loop through the candidates in the current result list until either there are no more candidates left to process or until a terminating condition has been met.
1.5.9.2. Is the candidate a DOT/ICC match?
1.5.9.2.1. If so, then it is automatically eligible for rule-based promotion.
1.5.9.2.2. If not, then set the candidate as promotable if the candidate’s name and address weights are at least as good as the best name and address weights from any DOT/ICC match candidates.
1.5.9.3. Is the candidate a MatchWare definite?
1.5.9.3.1. If MatchWare definite, is this candidate promotable?
1.5.9.3.1.1. If not promotable, then drop the candidate’s score to a high potential match score (demote).
1.5.9.3.1.2. If promotable, is this candidate active?
1.5.9.3.1.3. If active, set the MatchWare Definite Found flag (to be returned from function call).
1.5.9.3.1.3.1. Has a DOT/ICC Heuristic Definite candidate been found previously? If not, exit the loop. If so, continue looping: since the algorithm now has two definite match candidates (the current MatchWare definite and the DOT/ICC heuristic definite) and the query will require operator resolution, continue looping to provide the operator with all possible candidates that this search can provide.
1.5.9.3.2. If not MatchWare definite then is this candidate promotable?
1.5.9.3.2.1. If promotable, compute possible promotion – score improvement – by FMCSA rules.
1.5.9.3.2.2. Is candidate active, definite, and DOT/ICC type?
1.5.9.3.2.3. If so, set the DOT/ICC Heuristic Definite Found flag.
1.5.9.4. End of loop: re-sort the list if any scores changed.
Database Search Types

Each of the following queries is named after the columns that they search on. The query’s description includes the condition for employing it.
1. US DOT Number.

1.1. Executed: if query has a US DOT number.

1.2. Where: query-DOT = cand-DOT.

2. ICC Number.

2.1. Executed: if query has an ICC number

2.2. Where: query-ICC = cand-ICC.

3. Pure NYSIIS

3.1. Background.

3.1.1. Every carrier in the reference database has the first two words of its name standardized into NYSIIS values and stored in the carrier name table.

3.1.2. A “count” of the number of records in the database corresponding to each unique NYSIIS value is maintained in a separate table in the database. The length of time that a NYSIIS search will take depends on the number of records in the database that correspond to that NYSIIS value. This count is used to estimate the time required for a NYSIIS search and optimize the NYSIIS search. A higher count would take a longer time to complete a NYSIIS search.

3.1.3. The algorithm obtains the query name’s two NYSIIS values when standardizing the query. When searching, The algorithm looks up those values’ counts and uses them to determine which of the four NYSIIS searches, if any, would be the most reasonable to perform.

3.1.4. There are four NYSIIS searches, but only one of them is executed for any given query: NYSIIS1212, NYSIIS121, NYSIIS122, and NYSIIS12.

3.2. NYSIIS1212

3.2.1. Executed: if the counts of both query NYSIIS values are very low (see note 3.2.3.2).

3.2.2. Where:

query-NYSIIS1 = cand‑NYSIIS1 or query-NYSIIS2 = cand-NYSIIS2 or

query‑NYSIIS1 = cand‑NYSIIS2 or query-NYSIIS2 = cand-NYSIIS1

3.2.3. Notes.

3.2.3.1. The NYSIIS1212 is the most inclusive (and most costly) of all NYSIIS searches. No other query that includes one of the NYSIIS values as part of its selection criteria can return a candidate that the NYSIIS1212 did not return.

3.2.3.2. When city and state are present in a query, lower count thresholds can be used for determining whether to perform a particular NYSIIS search, since the query will have another chance at performing a NYSIIS search later in the sequence of NYSIIS/city/state and NYSIIS/state searches. For that reason, higher count thresholds are used when city and state are missing from the query. This applies to all pure NYSIIS searches.

3.3. NYSIIS121 and NYSIIS122

3.3.1. Execute

3.3.1.1. If query standardization produced only one NYSIIS value and its count is moderate.

3.3.1.2. If query standardization produced two NYSIIS values, but the counts of one was high, while the other was moderate.

3.3.2. Where (“query-NYSIISn” is either NYSIIS1 or NYSIIS2):

query-NYSIISn = cand-NYSIIS1 or query-NYSIISn = cand-NYSIIS2

3.4. NYSIIS12

3.4.1. Executed: if the counts of both query NYSIIS values are high.

3.4.2. Where

(query-NYSIIS1 = cand‑NYSIIS1 and query-NYSIIS2 = cand-NYSIIS2) or (query‑NYSIIS1 = cand‑NYSIIS2 and query-NYSIIS2 = cand-NYSIIS1)

3.4.3. The NYSIIS12 is the least inclusive and least costly NYSIIS search.

4. REVERSE-STREET-SOUNDEX/CITY-SOUNDEX/STATE.

4.1. Execute: if the carrier query has a street address, in addition to city and state.

4.2. Where:

query-revstreetsndx = cand-revstreetsndx and

query-citysndx = cand-citysndx and query-state = cand-state

5. UNIT-VALUE/CITY-SOUNDEX/STATE.

5.1. Execute: if the carrier query has a PO Box, in addition to city and state

5.2. Where:

query-unitval = cand-unitval and query-citysndx = cand-citysndx and

query-state = cand-state

6. NYSIIS/CITY-SOUNDEX/STATE.

6.1. Execute: only if the search performed in the NYSIIS step was not NYSIIS1212.

6.2. Where (query-NYSIISn is either NYSIIS1 or NYSIIS2):

(query-NYSIISn = cand-NYSIIS1 or query-NYSIISn = cand-NYSIIS2) and

query-citysndx = cand-citysndx and query-state = cand-state

6.3. If either NYSIIS121 or NYSIIS122 searches were performed previously, then the other, higher count, NYSIIS is used here.

7. REVERSE-STREET-SOUNDEX/STATE.

7.1. Execute: if the carrier query has a street address, in addition to state

7.2. Where:

query-revstreetsndx = cand-revstreetsndx and query-state = cand-state

8. UNIT-VALUE/STATE.

8.1. Execute: if the carrier query has a PO Box, in addition to state.

8.2. Where:

query-unitval = cand-unitval and query-state = cand-state

9. NYSIIS/STATE.

9.1. Execute: only if the search performed in the NYSIIS step was not NYSIIS1212.

9.2. Where (query-NYSIISn is either NYSIIS1 or NYSIIS2):

(query-NYSIISn = cand-NYSIIS1 or query-NYSIISn = cand-NYSIIS2) and

query-state = cand-state

Flow Diagrams

[image: image18.wmf]1.5.9 Apply Heuristics

1.5.9.2

DOT or ICC

cand?

1.5.9.1

while more

candidates to

process

1.5.9.3.2.3

Set DOT/ICC

Heuristic def found

flag

1.5.9.3.1.4

DOT/ICC Heuristic

def found

previously?

No

Yes

No

1.5.9.2.2

Name/Address

weights high

enough?

1.5.9.2.1

Set as promotable

Yes

1.5.9.3.2

Promotable?

1.5.9.3.2.2

DOT/ICC cand

and active and

definite?

Yes

1.5.9.3.2.1

Compute rule-

based weight

Yes

No

1.5.9.3.1

Promotable?

1.5.9.3.1.1

Demote

Matchware definite

to high potential.

No

1.5.9.3.1.2

Active?

Yes

Yes

No

Yes

1.5.9.3.1.3

Set Matchware

definite found flag

1.5.9.4

Loop end:

Re-sort list

No

1.5.9.3

Matchware

definite?

Yes

No

[image: image19.wmf]Query:

Name,

Address,

DOT, ICC

1.0

Process Query

Query

Declaration;

Detail List

Context

[image: image20.wmf]1 Process Query

1.1

Carrier Query:

Name, Address,

DOT, ICC

1.2

Standardize Query;

Analyze Query for

Searches to perform.

1.3

More search

candidates?

1.4

Is this search

perfomed for

this query?

1.5

Search and Match

1.6

Matchware

definite found?

No

No

Yes

1.7

Merge all search

results

Yes

1.8

Declare Query

Result

Yes

No

1.9

Query

Declaration;

Results list

[image: image21.wmf]1.5.6: Adjust Name Weights

1.5.6.1

Name Weight > 13?

1.5.6.2

words in query

different than # words

in candidate?

1.5.6.3

#cand words < #query

words?

No

Yes

No

Yes

1.5.6.5

Reduce name

weight according

to number of cand

words.

1.5.6.4

Cand words < 4?

Yes

1.5.6.6

Query words < 3?

Yes

No

1.5.6.7

Reduce name

weight according

to number of query

words

Yes

1.5.6.8

Adjust combined

weight

No

No

for each candidate

[image: image22.wmf]1.5.9 Apply Heuristics

1.5.9.2

DOT or ICC

cand?

1.5.9.1

while more

candidates to

process

1.5.9.6.4

Set DOT/ICC

Heuristic def found

flag

1.5.9.5.5

DOT/ICC

Heuristic def

found?

No

Yes

No

1.5.9.3

Name/Address

weights high

enough?

1.5.9.4

Set as promotable

Yes

1.5.9.6.1

Promotable?

1.5.9.6.3

DOT/ICC cand

and active and

definite?

Yes

1.5.9.6.2

Compute rule-

based weight

Yes

No

1.5.9.5.1

Promotable?

1.5.9.5.2

Demote

Matchware definite

to high potential.

No

1.5.9.5.3

Active?

Yes

Yes

No

Yes

1.5.9.5.4

Set Matchware

definite found flag

Loop end

1.5.9.7

Re-sort list

No

1.5.9.5

Matchware

definite

1.5.9.6

Not a Matchware

definite

Appendix E. Match Handler for New MCMIS

This Page Intentionally Blank

Match Handler

The Match Handler provides Standardization and Search-and-Match functionality to New MCMIS. It is composed of the Match Handler program written in C++ and a set of PL/SQL packages. The New MCMIS PL/SQL procedures call the Match Handler PL/SQL procedures directly, which in turn communicate with the Match Handler program via Oracle pipes. The Match Handler program links to the MatchWare Services API (see separate appendix), which is, in fact, the bulk of the code. The API, in turn, makes calls to the MatchWare callable library functions.

E.1 Match Handler Architecture

The Problem

The problem, which the Match Handler solved, is how to make MatchWare functionality available to the New MCMIS procedures, which are written in PL/SQL, in an efficient way, with as much code reuse as possible, given the following issues:

· MatchWare is written in C.

· APL’s MatchWare Services API, which encapsulates the MatchWare functions and adds an intelligent and efficient search algorithm and heuristic processing, is also written in C (C++).

· There is considerable startup overhead associated with the MatchWare Services API, including connecting to the database and MatchWare environment initialization.

· Although Oracle does provide the ability to invoke C functions from PL/SQL code, they implemented that call as a forked subprocess with a wait for the subprocess to terminate. Consequently, there can be no continuity of information between calls within the Match Handler code.

· The Match Handler interleaves database queries with numerous calls to MatchWare library functions.

One solution would have been to perform the database queries in PL/SQL from the session of the calling procedure, calling the MatchWare API in-between queries for just the minimum MatchWare services needed. That implementation would require re-writing the formidable amount of C++ code that processes the query results before and after sending them to the MatchWare API into PL/SQL. It is even questionable whether PL/SQL has the needed capabilities. The performance would suffer due to the relative inefficiency of PL/SQL compared to C++ and the overhead of MatchWare environment initialization every time the MatchWare API was called. Consequently, this solution was never implemented.

A better solution would have been to implement a C++ Match Handler with it’s own database connection. The PL/SQL would make a simple function call for search-and-match functionality. However, this implementation would require MatchWare environment initialization and a database connect each time the Match Handler was called. Since we desired to avoid the performance impact this overhead would incur, an alternative solution was investigated.

The Solution

The initialization performance goal was to achieve minimal startup overhead while invoking a callable Match Handler. This required that the Match Handler executable once started, run continuously in its own process with its MatchWare environment and a persistent database connection established. Interprocess communications allowing a PL.SQL procedure to communicate with an asynchronous C++ executable was provided via an Oracle pipes solution.

Oracle pipes are database objects, which allow two distinct processes, each of which have a database connection to the same Oracle instance, to communicate with each other. Similar to Unix pipes, processes can use Oracle Pipes to compose, send, listen for, receive and read messages from another process. (For detailed information on Oracle pipes see Oracle online documentation, Supplied PL/SQL Packages Reference document, package DBMS_PIPES).

Use of Oracle Pipes, supported the implementation of a callable Match Handler with the following flow characteristics:

· New MCMIS procedures requiring MatchWare services make calls to one of the Match Handler PL/SQL procedures.

· The Match Handler PL/SQL procedures pack the call arguments into a message and send it on a predefined “request” pipe.

· The Match Handler program, which listens for messages on the request pipe, picks up the message, unpacks it, processes the request, and packs the results into a return message. It sends that message on a unique, temporary pipe back to the listening Match Handler PL/SQL process.

· When the Match Handler PL/SQL receives the message, it unpacks the information and returns it to the calling New MCMIS procedure.

An important characteristic of Oracle pipes warranting special note is that pipes are transaction independent. Each process sending and receiving messages on pipes runs in its own session and its own transaction; any uncommitted updates, inserts, or deletes in one process will not be visible to other processes.

E.2 Match Handler Program Design

The Match Handler program which runs asynchronously and processes the standardization and search-and-match requests has a simple design: a “main” function, an mh_class object, and calls to the MatchWare Services API.

Mh_class functions:

· Set up and handle all communication with the Match Handler PL/SQL over the Oracle pipes.

· Field user requests for standardization and search-and-match by calling MatchWare Services API functions.

· Handle all administrative tasks, including logging, heartbeat posting, ping, and termination.

The “main” function in match_handler.cpp instantiates an object of type mh_class and then goes into an infinite event loop within which two mh_class functions are called:

· heartbeat checks for administrative requests on the administrative pipe and if one is present, responds to it. It also posts a timestamp to the heartbeat log if the heartbeat interval has transpired.

· user_request waits for a message on the request pipe based on the wait time established at initialization time. If a request is detected, it services it.

The “main” function’s event loop is exited if an administrative terminate request was received or if there is an error logged to the heartbeat file.

The MatchWare Services API is invoked through the cm_services interface. This is where the standardization and search-and-match requests are completely processed. See MatchWare Services API documentation for details.

E.3 Match Handler Database Setup

Before Match Handlers can execute, the following database administration tasks have to be completed:

· The Oracle database user under whose database account the Match Handler PL/SQL process will be created must exist and posses execute privilege on Oracle package dbms_pipe. This user will be referred to as the match handler user.

· Run the following scripts logged in as the match handler user:

· \api\v3\sql\build\match_handler\mh_build script.

· \api\v3\sql\plsql\match_handler\build.sql

· Execute privilege on pkg_mh_defs and pkg_match_handler must be granted to any users or roles needing to call the Match Handler.

E.4 Match Handler Program Operation and Administration

More than one Match Handler program can be executed at the same time. Even though all handlers listen on the same request pipe, individual messages can only be retrieved and processed by individual handlers. The Oracle pipes package ensures that messages are removed from their pipes once received by a process. Multiple handlers could potentially greatly improve performance in a high user-request scenario, provided that system resources are available to support them.

Match Handlers post significant events to log files as well as a periodic “heartbeat” to a heartbeat file. Heartbeats consist of the handler’s unique id number and a date/time stamp. The purpose of heartbeat and log files are to give the administrator a way of determining each handler’s status – particularly to see whether a given Match Handler process is still running, or whether it has entered a “hung” state.

Running Match Handlers

Match Handler programs can be executed in the foreground from a NT command window or in the background using NT’s AT scheduler. The Match Handler has required and optional parameters. It is invoked from its bin directory using its executable name, match_handler.

Required Arguments:

· Database host name

· Database username

· Database password

· Root directory spec for logging: Two subdirectories of the root directory, one named “logs” and the other named “heartbeats” must exist.

Optional Flags (case insensitive)

1. /D -- Debug mode. Generates debug information for fixing software problems. Information output to the log file in debug mode will likely not be meaningful to an operator, and will merely clutter up the log file.

2. /F -- Foreground heartbeats. Writes all debug, log, and heartbeat information to STDOUT. Used when running the Match Handler from an NT command window. Ignored if running in the background.

3. /H<n> -- Heartbeat interval (in minutes). Default is15 minutes.

4. /Q -- Quiet mode -- does not prompt user for confirmation. The /q switch is required if running in the background. If not present, the process will hang up forever in the background waiting for user confirmation.

5. /W<n> -- Wait time for user request (in seconds). Default is 1 second. Determines how long the handler waits for a user request before checking for an administrative request and posting a heartbeat (if it is time).

As soon as a new handler is started, log and heartbeat files for it will appear in its respective directories. For example, if a new handler’s Id (automatically assigned) is “15”, and the root log directory is d:\matchWork\handler, then a 15.log file will appear in the d:\matchwork\handler\logs directory and in the d:\matchwork\handler\heartbeats directory. When handler 15 terminates, the heartbeat log will disappear, but the log file will remain.

Running Handlers in the Background

To run a match handler in the background, create a command file similar to the following one used on psafer7:

d:

cd \api\v3\bin

match_handler.exe psafer7 nmMatch test d:\matchWork\handler /d /f /h1 /q

The /q (quiet) switch is important for running in the background. It prevents the executable from asking for user confirmation, which would only serve to hang the executable up forever, since there's no way of answering questions asked from a background process.

The job is then scheduled in the normal way, for example:

at 11:00 runMH.cmd

Terminating Match Handlers

A running match handler can be terminated using a function in the pkg_mh_admin as follows:

SQL> select pkg_mh_admin.fnc_terminate_handler(<handlerId>, <timeout>) from dual;

The handlerId is the unique Id of the handler that is to be terminated. The timeout value must be at least as long as the wait time that the target handler was initialized with.

This Page Intentionally Blank

Appendix F. MatchWare Applications Distribution CD

This Page Intentionally Blank

The information in this appendix describes the contents of the MatchWare Application for New MCMIS CD that was provided to the New MCMIS team as part of the software delivery in June 2002. This information is provided for members of the New MCMIS team at the FMCSA who are responsible for installing, supporting and maintaining MatchWare applications for New MCMIS.

F.1 MatchWare Applications for New MCMIS CD

The referenced CD contains the MatchWare Applications for New MCMIS as well as all the source code and supporting scripts for these applications that were developed by JHU/APL. A CD containing the MatchWare applications for New MCMIS and the supporting source code were delivered by JHU/APL to the New MCMIS development team in June 2002. A patch for the applications was released and delivered to the New MCMIS development team electronically in July 2002. A fix for the Match Handler was implemented in August 2002 and a CD incorporating all versions of the MatchWare applications and source code was delivered to the New MCMIS development team on August 20, 2002.

F.2 Call Hierarchy and Cross Reference

JHU/APL has prepared an Excel spreadsheet to explain the call hierarchy among the major components. The spreadsheet also contains a cross-reference table of the MatchWare Applications for New MCMIS.

Screen snapshots of the Call Hierarchy Spreadsheets are provided in this appendix so that members of the New MCMIS development team can get familiar with the contents of the spreadsheet. On the actual spreadsheet, viewers can drill down to get details of any particular component by clicking the “+” tab on the left hand side of the spreadsheet.

Finally, the Cross Reference table is also provided in this appendix as a reference tool.

MatchHandler

[image: image4.png]GRY | BBI|0-> (@ A P10 - D).

DEda

BRIy

Ele Edt Vew Insert Format Tooks Data Window Help

ce2 |

=] Call MatchiWare_class init on the name instantiation if ot already initialized

el alslsl7] A B ©
1| match_handler main Tnstantiate mh_class object
3| match_handler main Process program arguments
Call db_lib.dh_init with database host, schema name, and password with dafabase host, schema
el match_handler main
4 name, password to connect to the database
" match handier i Call mh_class.register_handler with root logging directory, heartbeat interval, user request wait
8 time, siring for error message (if any), and run-in-foreground flag
26| match_handler main Loop until stop condition met
|+l 27| match_handler main Call mh_class heartheat to hande administraive tasks
+ 38| match_handler main Call mh_class.user_request to wait for user request
73| match_handler main End loop
74

4] 4[> [pi]\Match Handler interMatch

Cross Reference

Ready

Top Level Match Handler Call Hierarchy

MatchHandler

[image: image5.png]RS EGRY s mBS o - (@ s tlil@H0 -@. o -|B 7
Ho £ Yow frert Famat oo Date indon ok
CB2 | =/ Call Matchiware_class.init on the name instantiation if not already initialized.
R JRT=TE]
t[2[3]4] 5[] 7] A B T
=| 1| match handler ‘main Instantiate mh_class object
° 2 mih_class mih_class Tnitialize class settings
3 | match_handler ‘main Process program arguments
Call db_lib.db_init with database host, schema name, and password with database host, schema

=| ‘match_handler ‘main
4 name, password to connect to the database
5 db_lib db_init Connect to database <schema-name> on host machine <host> using password <password=>

= match_handler main Call mh_class.register_handler with root logging directory, heartbeat interval, user request wait
[time, string for error message (if any), and run-in-foreground flag
7 mih_class register_handler | Set settings and processing flags

8 mih_class register_handler | Instantiate em_services object.
2 mih_class register_handler | Call db_mh.get_handler_id returning handler Id.
2 mih_class register_handler | Call db_pipe.create_pipe with handler Id

26| match_handler ‘main Loop until stop condition met

= 27| match_handler main Call mh_class.heartheat to handle administrative tasks

| 28 mh_class heartbeat Call _admin_request to check for administrative request.
-] 36 mh_class heartbeat Call _post_heartheat i/ heartbeat interval has transpired
1—‘- 37 mih_class _post_heartbeat Open the heartbeat log file, post a timestamped message to it, then close it
=| 38| match_handler ‘main Call mh_class.user_request to wait for user request
Il i class user_soauest Call db_pipe.receive_message to listen for a request on the public request pipe for the
39 predefined wait interval
41 mih_class user_request Call db_pipe.unpack_message to obtain the request type
45 mih_class user_request If request is @ carrier query, call mh_class._search_and_match
54 mih_class user_request f request is to standardize a carrier, call mh_class._standardize.

73| match_handler ‘main End loop
74
75

[I4 4> [pi1\Match Handier { tartiatch . Cioss Reference [l [

Second Level Match Handler Call Hierarchy

MatchHandler[image: image6.png]RS EGRY s mBS o - (@ s tlil@H0 -@. |2 -|B 7
He £9t Yo [t Fomat Tooks Data Widow tlp
A5 =) =] match_handler
allFiera Read-0 _[ol x|
1] 2[3[4] 5[] 7] A B C =l
o mateh_handler i Call mh_class.register_handler with root logging directory, heartbeat interval, user request wait
[time, string for error message (if any), and run-in-foreground flag
7 mh_class register_handler | Set settings and processing flags
8 mh_class register_handler | Instantiate cm_services object.
9| cm_services cm_services Tnitialize class settings
= 10 cm_services cm_services Instantiate match_engine object
= 11| match_engine match_engine Instantiate matchlib object
@ ‘matchlib ‘matchlib Initialize class variables, MatchWare environment settings, including the nysiis_counts array
-] 13 ‘matchlib ‘matchlib Initialize default MatchWare_class object
14 ‘matchlib ‘matchlib Tnstantiate MatchWare_class object
15 | MatchWare_class MatchWare_class Initialize class variables
=S -] ‘matchlib matchlib Call MatchWare_class.init for the MatchWare class object to initialize its environment.
. MatchWare_class init Call MatchWare_wrapper.keyinit to initialize the keyGlob MatchWare global variable
18 | MatchWare_class init Call MatchWare_wrapper.stuinit to initialize the staGlob MatchWare global variable.
@ MatchWare_class init Call MatchWare_wrapper.matinit to initialize the matGlob MatchWare global variable
20| maich_engine match_engine Tnstantiate array of match_rec_class objects
21 | match_rec_class | match rec_class Tnitialize and clear class variables, flags, and settings.
) mh_class register_handler | Call db_mh.get_handler_id returning handler Id.
pe) db_mh get_handler_id Obtain unique number from database
2 mh_class register_handler | Call db_pipe.create_pipe with handler Id
Call (Oracle) dbrms_pipe.create_pipe function to create a pipe for administrative requests
db, it
% -pipe create_pipe named with the handler Id.
26| match_handler main Loop until stop condition met -
[41b [pil\Match Handler { intariatch / Cross Reference 14l E— ﬂr}

Ready T | | Rl R

Details of Match Handler mh_class.register_handler call hierarchy

MatchHandler

[image: image7.png]RS SRY s mBS o - (@ s tlil@H0 -@. |2 -|B 7
Hlo Edt Yow Insert Fomat ook Dota Window telp
A5 | =| match_handler
112/304508/7] A B [3 =
-] 27| match_handler main Call mh_class.heartheat to handle administrative tasks
-] 28 mh_class heartbeat Call _admin_request to check for administrative request.
=) mh_class _admin_request Call db_pipe.receive_message listen for a request on the handler's administrative pipe.
1—‘ a0 db_pipe receive_message Call dbms_pipe. receive_message on <pipe> for <wait> amount of seconds.
31 mh_class _admin_request if message received
2 mh_class _admin_request Set stop condition flag if terminate command received
= 3 mh_class _admin_request Call _post_heartheat if ping command received.
1—‘- 3 mh_class _post_heartbeat Open the heartbeat log fle, post a timestamped message to it, then close it.
® mh_class _admin_request end if
® mh_class heartbeat Call_post_heartheat if heartbeat interval has transpired
1—‘ a7 mh_class _post_heartbeat Open the heartbeat log fle, post a timestamped message to it, then close it
[i4 [« [bi}\Match Handler { interiatch 7 Cross Reference Ll T Oy
Ready T [R 7 | S

Details of Match Handler mh_class.heartbeat call hierarchy

MatchHandler

[image: image8.png]DEEASRY BRI o -~ [0z s sl H|@Hwx - @[z -[8]7]
Ho £ Yow frert Famat oo Date indon ok
c73 | End loop
alera 101X
1] 2[3[4] 5[] 7] A B T
26| match_handler ‘main Loop until stop condition met
Kl 27| match_handler main Call mh_class.heartheat to handle administrative tasks
=| 38| match_handler ‘main Call mh_class.user_request to wait for user request
o e class [Call db_pipe.receive_message to listen for a request on the public request pipe for the
39 predefined wait interval
40 db_pipe receive_message Call dbms_pipe receive_message on <pipe> for <wait> amount of seconds.
41 mih_class user_request Call db_pipe.unpack_message to obtain the request type
2 db_pipe unpack_message Call db_pipe.next_item_type to determine if next message item is of the correct type.
43 db_pipe next_item_type Call dbms_pipe.next_item_type to obtain data type of next item in the message.
b pipe unpack_message Call dbrms_pipe.unpack_message to get the next message item on the pipe if its ifem fype is
4 the expected type.
45 mih_class user_request If request is @ carrier query, call mh_class._search_and_match
. class search and mateh Gl Ub_pipe.unpack_message sequentially to get the retum pipe Id, search Id, max candidates
46 L = LAne limit, and the carrier query string.
47 db_pipe unpack_message Call db_pipe.next_item_type to determine if next message item is of the correct type
48 db_pipe next_item_type Call dbms_pipe.next_item_type to obtain data type of next item in the message.
db_pipe unpacke_message Call dbms_pipe unpack_message to get the next message item on the pipe if its item type is
49 the expected type.
Call cm_services.interMatch with the carrier string, search Id, and candidate limit and return the
mh_class search_and_match
50 - = - number of canidates found
=| 51 mih_class _search_and_match Call db_pipe.pack_message sequentially with the return status and number of candidates
52 db_pipe pack_message Call dbms_pipe. pack_message with the <value>
53 mih_class _search_and_match Call db_pipe.send_message to the user pipe to send results back to the user.
54 mih_class user_request f request is to standardize a carrier, call mh_class._standardize.
3 mh_class _standardize Call db_pipe.unpack_message sequentially to get the retum pipe Id and carrier string
5 db_pipe unpack_message Call db_pipe.next_item_type to determine if next message item is of the correct type.
57 db_pipe next_item_type Call dbms_pipe.next_item_type to obtain data type of next item in the message.
b pipe unpack_message Call dbrms_pipe.unpack_message to get the next message item on the pipe if its ifem fype is
2] the expected type.
b class standardize Call request_utils.stdstr_to_stdrec with the carrier string and a standardize record to map.
5 - - from the string to the record.
B0 mh_class _standardize Call cm_senvices.interStd with the record.
=| 61 CIM_SErvices, interStd Call matchlib.standardize with the record
62 matchlib standardize Call MatchWare_class.init on the name instantiation if not already initialized.
B3 matchlib standardize Call MatchWare_class.init on the address instantiation if not already initialized.
B4 matchlib standardize Call MatchWare_class. standardize_and_fetch on the default instantiation with carrier query.
65 matchlib standardize Call MatchwWare_class. standardize_and_fetch on the name instantiation with carrier query.
Call MatchWare_class.self_match on the name instantiation with the carrier guery retuming the
matchlib standardize
66 name component weight.
matchlib standardize
67 Call MatchwWare_class. standardize_and_fetch on the address instantiation with carrier query.
Call MatchWare_class.self_match on the address instantiation with the carrier query returning
matchlib standardize
=) the address component weight.
b class standardize Call request_utils.stdrec_to_stdstr with the record and the string to map the record fields
59 - - into the return string
o e class sandardize Call db_pipe.pack_message sequentially with the return status, the return string, the name and
70 address weights.
71 db_pipe pack_message Call dbms_pipe. pack_message with the <value>
72 mih_class _standardize Call db_pipe.send_message on the user pipe to send results back to the user.
73| match_handler ‘main End loop
o
[i4T4[> [pil\Match Handler { ntertiatch / Cross Reference ikl | N

Ready T [Nom[[T

Details of Match Handler Loop Call Hierarchy

 interMatch

[image: image9.png]]
DSZESEGRY I RBS | o-= (@ 4 85| @H0 -0,

e 6t Yow Insort Fomat Took Data Window top

rosoft Excel

Jio «

SE| Call matchlib.standardize with the query if not already standardized.
allHiera Read-0 =10l
Uzlslals]sl7]s] A B c |
Bl T om_senices interatch Instantiate match_rec_class object resulls
{1 o semices terMaton Call om_services. search_and_match vith two query recards, two query-present booleans, an
4 - interactive flag, and results
||] 04| em_senices interMatch Call match_rec. class.resolve_match_status
‘ 10| om_senices interatch Call match_rec._class.numher_candidates to get the number of candidates obtained
| o semices terMatoh Call db_mhinsart_results withhe search 1, number of candidates, a poiner o the lst of
| 1 candidates, and the number of candidates to log to insert the results into the results table. -
(1] b1\ itch Hareler anterMatch { Cross Raference 1l T e ——

‘Ready T | | el R

Top Level interMatch Call Hierarchy

interMatch

[image: image10.png]RS ERY 2B o-o (@ a8l il |@H0 - @, |0 -
Ho £ Yow frert Famat oo Date indon ok
c15 | Call matchlib. standardize with the query if not already standardized.
t[2[3]4] 5[s|][A B T |
1 cm_senvices interhatch Instantiate match_rec_class object results
2 | match_engine match_engine Tnstantiate array of match_rec_class objects
3 | match_rec_class match rec_class Tnitialize and clear class variables, flags, and settings.
Call cm_services._search_and_match with two query records, two query-present booleans, an
cm_senices interiatch
4 - interactive flag, and results
6 | cm_senices | _search_and_match | Call match_engine.process_search with first name/address pair and the first results list
97| cm_sewices _search_and_match | if two name/address pairs were passed
98| cm_semices _search_and_match | Call match_engine.process_search with second name/address pair and the second results list
99 cm_semices _search_and_match Call match_rec_class.recombine with the twa results lists
Call match_rec_class.merge on the retum list abject with the ariginal twa lists and the new
cm_senices search_and_match
100, - - i recombine list
101 cm_serices _search_and_match else
102 cm_serices | _search_and_match | Call match_rec_class.merge on the retum list object with the one results list
103 cm_serices | _search_and_match | end i
104 cm_senices interMatch Call match_rec_class.resolve_match_status
Call match_rec_class.definites_exist and match_rec_class.multiple_definites to determine if
match_rec_class | resolve_match_status
105 e - - this list has a single definite (for later processing)
108 match_rec_class | resolve_match_status Use heuristic logic to resolve the query’s status
107, match_rec_class | resolve_match_status | If status is potential match and it is @ SafeStat run, change the status to definite no match.
If quety camier is an intrastate camier call match_rec_class.resolve_intrastate_status for special
match_rec_class | resolve_match_status
108 e - - outcome resolution pracessing.
109 match_rec_class | resolve_match_status Call match_rec_class.cut_low_cands.
110 cm_senices interMatch Call match_rec_class.number_candidates to get the number of candidates obtained.
o senices interMatch Call db_mh.insert_results with the search Id, number of candidates, a pointer to the list of
111 - candidates, and the number of candidates to log to insert the results into the results table.
112 =
114> [DI1\ Mateh iandler)interMatch { ross Reference 14l | r/‘

Ready

T I Il NUM [I /

Second Level interMatch Call Hierarchy

interMatch

[image: image11.png]DEHAEGRY | $BAI 0o [@= £ 4% [@H 0w - [0 -
e
Cc15 ﬂ =| Call matchlib.standardize with the query if not already standardized.
1]2[3]a[5[s[73] A B [=
Call cm_services._search_and_match with two query records, two query-present booleans, an J
cm_senices interiatch
4 - interactive flag, and results
- 5| cm_senices | _search_and_match Call match_engine.process_search with first name/address pair and the first results list
B | match_engine process_search Initialize result lists, class variables; standardize query if not yet done.
7 | match_engine process_search Ioop though all search type possibilities
- 8 | match_engine process_search Call match_engine.search_condition with search_step retuming search_id
9 | match_engine search_condition Call matchlib.preview_nysiis_counts i search_step is nysiis step
10 matchlib preview_nysiis_counts Call db_search.nysiis_counts to get database counts for the query's nysiis values.
matchlb search.condition Determine whether search may be performed for search step given contents of query
1" - standardization.
&l match_sngine process_search Call match_engine.search_and_match with standardized query, search Id if performing search
12 for this step
93| match_engine process_search end loop.
- 94| match_engine process_search Call match_engine.merge_searches to merge all search results into one list
r 95| match_rec_class merge_searches Call match_rec_class.merge on the merge list with all search results list
96 | match_rec_class merge Call match_rec_class.sort and match_rec_class.reset_stack for each results fist
97| cm_senices _search_and_match | if two name/address pairs were passed
98| cm_senices | _search_and_match Call match_engine.process_search with second name/address pair and the second results list
99| cm_senices _search_and_match Call match_rec_class.recombine with the two results lists
Call match_rec_class.merge on the retum list object with the original twao lists and the new
cm_senices search_and_match
100, - - i recombine list
01| cm_senices | _search_and_match | else
102 cm_semices _search_and_match Call match_rec_class.merge on the retum list object with the one results list
- 03] cm_senices | _search_and_match | end if
414> [DI1\ Match Hander)interMatch { Cross Reference JE1) | r‘

Ready IT I]

Top Level cm_services.search_and_match call hierarchy

interMatch

[image: image12.png][
DEEHS SRY $BBI - &= A G S @08 7

Ele Edt Vew Insert Format Tooks Data Window Help

Ca2 | = Call match_rec_class.sort
= =T
Lzlslalsslo0s A B ©
Call match_engine.search_and_match with standardized query, search Id i performing search
- match_engine | process_search
12 for this siep
13| match_engine | search_and_match Call match_rec_class.init to iniialize the match list
- 14| match_engine | search_and_match Call matchlih.search_and_rank with the standardized query and the match list
15| maichib search_and_rank Call matchlib.standardize with the query if nol already standardized
5 6] matchib search_and_rank Call db_search.open_search_cursor_id with the standardized query and the search Id
17| db_search open_search_cursor_id Fabricate SGL query staement
= 18] do_search open_search_cursor_id Call db_search._apen_search_cursor with query string and the carrer query.
[- (19| db_search _open_search_cursor_id Use dynamic SOL to prepare and declare the SLQ cursor.
20| do_search _open_search_cursor_id Open the cursar with the appropriate arguments for the query.
Call matchib.int_ranking with the standardized query to initalize the MatchWare maich key
- matchila search_and_rank
2 il with the query
2| matchib init_ranking Loop for each MatchWare class environment (ful,do, icc, name, address)
23| matchib init_ranking Iniialize MatchWare_class object if not already initalized
24 matchib init_ranking Call MatchWare_class.standardize with the query.
2 matchib init_ranking end loop
2% matchib init_ranking Cal MatchWare_class.initalize_matching an the default
[+ [27 |MatchWare_class initialize_maiching Cal MatchWare_wrapper.newlist
28| MatchWare_class _ initialize_matching Zero class counter variables.
2 matchib search_and_rank Loop while more candidates to fetch from the database
4 Call db_search.fetch_search_cursor returing an array of search recs, the number of search
a| maet search_and_rank candidates retumed, and whether there are still more candidates to fetch ftam the database
+ 4| matchib search_and_rank Call matchlih.add_candidates vith the array of search_recs and the number of candidates
48 matchib search_and_rank end loop
- atchlib coarch and_rank Call matchlib.do_ranking retuming the match_tec_class resuls list # any and alf
ye) il candidates were successfull retrisved from the database.
+ [79] matchib search_and_rank Call matchib.end_ranking to complete the aperation in the MafchWare emvronment
82 matchib search_and_rank Call db_search.close_search_cursor
= tch engine | search andmateh Call match_rec_class.set_hest weights with besi_name_weight and besi_address_weight if
& - e search type is DOT or ICC search returning the best name and address weighis.
84 maich_rec_class | sel_besi_weights Set besi_name_weight to candidate name weight i 1 is befter
85| maich_rec_class | sel_besi_weighs Set besi_address_weight to candidate address weight f i is better
Call match_tec_class. apply_heuristics with the match lit, the best name and address weights
- match_engine search_and_match and whether a heuristic DOT or ICC definite was found, retuming whether 2 MatchWare definite
% was found
87 | maich_rec_class | apply_heuristics Loop through candidates while stop condition not met and not end of st
B8 | maich_rec_class | apply_heuristics Call match_rec_class.promotion_criteria_met to determine if candidate is promatable
= atch oo clacs | apply_hewrstice Call maich_tec_class. compute_rule_weight on candidate i it is promatable but not a
3 e - MatchWare definite match
1f one of many conditions is met, increase the candidate’s score according to which
match_rec_class | compute_rule_weight
0 condition was met
91| maich_rec_class | apply_heuristics end loop
- 52| match_rec_class _apply_heuristics Call match_rec_class.sort ~
41> (MM iach Harder interMatch { Cross Reference / 1] R

Ready RO

Details of cm_services.search_and_match call hierarchy

interMatch

[image: image13.png]'

Deds 8RY

PBBIL o

Fle Edt Vew Insert Format Toos Data Window Help
=| Call match_rec_class.sot

@ A AP ion 0|0 -] B 2

€92 |
=

13

. 15
+ |16

2
2

0
3

ET}
ES
*®
£l
3
)

48
49
a2
5}

84
(3

[}
&7
88

89

90
91
E7)

Ready

A
match_engine

match_engine

match_engine
matchiib
matchiib

matchiib
matchiib
matchiib

db_search
db_search
db_search
db_search
db_search
db_search
db_search
db_search
db_search
matchiib
matchiib
matchiib

matchiib
matchlib

match_engine
match_rec_class
match_rec_class
match_engine
match_rec_class
match_rec_class

match_rec_class

match_rec_class

match_rec_class
match_rec_class

B
process_search

search_and_match

search_and_match
search_and_rank
search_and_rank

search_and_rank
search_and_rank
search_and_rank

fetch_search_cursor
fetch_search_cursor
fetch_search_cursor
fetch_search_cursor
fetch_search_cursor
fetch_search_cursor
fetch_search_cursor
fetch_search_cursor
fetch_search_cursor
search_and_rank
search_and_rank
search_and_rank
search_and_rank
search_and_rank
search_and_match

set_best_weights
set_best_weights

search_and_match

apply_heuristics
apply_heuristics

apply_heuristics

compute_rule_weight

apply_heuristics
apply_heuristics

41> [V fiach Hander interMatch { Cross Reference /

E =
Call match_engine.search_and_match with standardized query, search Id i performing seaich
for this step
Call match_rec_class.init to initalize the match list
Call matchiib.search_and_rank with the standardized query and the match list
Call matchlib.standardize with the query if not already standardized
Call db_search.open_search_cursor_id with the standardized query and the search Id
Call matchib.int_ranking with the standardized query to initiaize the MatchWare match key
with the query
Loop while more candidates to fetch from the database
Call db_search.fetch_search_cursor returing an artay of search recs, the nurmber of search
candidates retumed, and whether there are still more candidates to fetch fiom the database
ds to initalize al host indicator arrays
Call db_search.s_init_all_varchars to intialize all varchar-type host arrays
Call db_search.s_init_all_chars to initialize all char-type host arrays
it_all_numbers to initialize all numeric host arays
Execute embedded QL to fetch rows from database into host arrays
Assign counter variable values
Call db_search.s_terminate_all_varchars to nullterminate all varchar host aray elements
Initalize the arays of search_rec_type
Assign values from host anays into search_rec_type arrays
Call matchlib.add_candidates with the array of search_recs and the number of candidates
end loop
Call matchlib.do_ranking returning the match_rec_class resuls list # any and ail
candidates were successfuly retrieved from the database.
Call matchib. end_ranking to complete the operation in the MatchWare environment
Call db_search.close_search_cursor
Call match_rec_class.set_best weights with best_name_weight and best_address_weight if
search type is DOT or ICC search returting the best name and address weights
Set best_narne_weight to candidate name weight f i is better
Set best_address_weight to candidate address weight i it is better
Call match_rec_class.apply_heuristics with the match list, the best name and address weights
and whether a heuristic DOT or ICC defrite was found, returing whether a MatchWare definite
was found
Loop thiough candidates while stop condition not met and rot end of list
Call match_rec_class.promotion_criteria_met to deterrmine if candidate is promotable
Call match_rec_class.compute_rule_weight on candidate ifit is promotable but not
MatchiWare definite match
I one of many conditions is met, increase the candidate’s score according to which
condition was met
end loop
Call match_rec_class.sort

| F———
UM

Details of match_engine.search_and_match call hierarchy

interMatch

[image: image14.png]|SMicosoftencel ______________________
DEEa8RY BB (o - (@ A 43| @S w -7,

Ele Edt Vew Insert Format Tooks Data Window Help

|0 -|B 7

cio_ o Call matchlib.add_candidates with the anay of search_recs and the nurmber of candidates
alliera Read 0 ol
|| MEERECED) A B C =
- 28 matchib search_and_rank Loop while more candidates to fetch from the database
Cal db_search.fetch_search_cursor returning an array of search recs, the nurmber of search
tohlib h_and_rank 5 search ¢ .
! s e search_and_tant candidates retumed, and whether there are stll more candidates to fetch from the database
5 | matchib search_and_rank Call matchlih.add_candidates vith the array of search_recs and the number of candidates
41| matchib add_candidates for each candidate
o matchlib addcandidates Call MatchWare_class. add_candidate on the full MatchWare enviranment with the candidate
2 - search rec
VietchWare class | add_candidate Call MatchWare_class._make_match_input_str with the search recard, returning the
5 . - MatchWare candidate string
Call utils.place_chars for each string field i the search record with the MatchWare
MatchWare_class _make_match_input_str tring, the recard field valuz, and the position and length within the MatchWare sring for
| m that field

Call ut

MatchiWare_class _make_match_input_str .place_int and utils.place_char, respectivly, for each integer and character

4 field in the search record
45 | MatchWare_class | add_candidate Call MatchWare_wrapper.newcand with the MatchWare candidate string
- |az| matchib add_candidates end loop 5
44> b1\, Match Handler) interMatch { Gross Reference ia E— ﬂr}

Ready [T [mml [[

Details of matchlib.add_candidates call hierarchy

interMatch

[image: image15.png](5]

Deds 8RY

PBBIL o

Ele Edt Vew Insert Format Tooks Data Window Help
Call matchib. add_candidates with the array of search_recs and the number of candidates

cao |

Q= A4 mBon -B).n -8 2

49

50
51
52
- =
= |54
-8
56
57

58
59
60
61
62
63

64

65
66
67
68

69

70
7
72
7
74
75
76
77
78

Ready

A

matchiib

matchiib

matchiib
matchiib
matchiib
matchiib

MatchiWare_class
matchiib
matchiib

matchiib

MatchWare_class
MatchiWare_class
MatchiWare_class
MatchiWare_class
matchiib

matchiib

match_rec_class

match_rec_class
match_rec_class
match_rec_class

matchiib

match_rec_class

match_rec_class
match_rec_class
match_rec_class
match_rec_class
match_rec_class
match_rec_class
matchiib
matchiib

B

search_and_rank

do_ranking

do_ranking
do_ranking
do_ranking
do_ranking

fetch_candidate
do_ranking
do_ranking

do_ranking

dip
dip
dip
dip
do_ranking

do_ranking

narme_weight_adjusted

narme_weight_adjusted
narme_weight_adjusted
narme_weight_adjusted

do_ranking

add_one

add_one
add_one
add_one
add_one
add_one
add_one

do_ranking

do_ranking

1> [N tiatch Handir interMatch { Cross Reference /

©
Call matchlib.do_ranking returning the match_rec_class resuls list # any and ail
candidates were successfuly retrieved from the database.
Call MatchiWare_class. match_candidates with the full matchare enviranment to match all
candidates added to the environment against the query
Call Matchiware_wrapper. dorntch
loop for all candidates
Call match_rec_class.init local match_rec_class variable.
Call MatchiWare_class fetch_next_candidate with local match_rec variable
Call MatchiWare_wrapper. getcand returning the candidate string and its weight
break out of loop if weight has failen beflow thieshold
Loop for each MatchWare class environment (full_dot, icc, name, address)
Call MatchiWare_class.dip on the component-specific MatchWare_class object to obtain the
candidate’s component (dot jcc narme or address) weight
Call MatchiWare_class initialize_matching
Call MatchWare_class add_candidate to add the single candidate
Call MatchWare_class match_candidates
Call MatchiWare_class fetch_ext_candidate returing the component weight
end loop
Call match_rec_class. name_weight_adjusted on the default MatchWare class object to
adjust the name weight, if necessary.
If MatctWere retumed an excellent score for name match but the query and candidete
have different number of words then
Adjust the name weight according to the number of words that actually matched
end if
Adjust the combined weight according to the new name weight if name weight changed
Call match_rec_class.add one with the local match_rec_class variable to add the
candidate to the match list object i its score is still sbove threshold
Call match_rec_class.num_is_list to determine if the record is already a member of the
match list
if record is not in the list
Reallocate the list size one record larger.
Add the new record at the end of the list
else if record is in the fist
Replace the old list mernber with the new one i its score is higher.

end if
end loop
Call match_rec_class.sort on the match list object to sort its members by weight B
| [—
UM

Details of matchlib.do_ranking call hierarchy

This Page Intentionally Blank

Cross Reference Table

	Function Name
	Module Name

	add_candidate
	matchware_class.cpp

	add_candidates
	matchlib.cpp

	add_one
	match_rec_class.cpp

	apply_heuristics
	application_logic.cpp

	_admin_request
	mh_class.cpp

	close_search_cursor
	db_search.pc

	cm_services
	cm_services.cpp

	compute_rule_weight
	application_logic.cpp

	create_pipe
	db_pipe.pc

	cut_low_cands
	match_rec_class.cpp

	db_init
	db_lib.pc

	definites_exist
	match_rec_class.cpp

	Dip
	matchware_class.cpp

	do_ranking
	rank.cpp

	Domtch
	matchware_wrapper.c

	end_matching
	matchware_class.cpp

	end_ranking
	rank.cpp

	Endcase
	matchware_wrapper.c

	fetch_search_cursor
	db_search.pc

	Freecan
	matchware_wrapper.c

	get_handler_id
	db_mh.pc

	Heartbeat
	mh_class.cpp

	fetch_candidate
	matchware_class.cpp

	fetch_next_candidate
	matchware_class.cpp

	Getcand
	matchware_wrapper.c

	Init
	match_rec_class.cpp

	Init
	matchware_class.cpp

	init_ranking
	rank.cpp

	initialize_matching
	matchware_class.cpp

	insert_results
	db_mh.pc

	InterMatch
	cm_services.cpp

	InterStd
	cm_services.cpp

	Keyinit
	matchware_wrapper.c

	Main
	match_handler.cpp

	_make_match_input_str
	matchware_class.cpp

	match_candidates
	matchware_class.cpp

	match_engine
	match_engine.cpp

	match_rec_class
	match_rec_class.cpp

	Matchlib
	matchlib.cpp

	matchware_class
	matchware_class.cpp

	Matinit
	matchware_wrapper.c

	Merge
	match_rec_class.cpp

	merge_searches
	match_rec_class.cpp

	mh_class
	mh_class.cpp

	multiple_definites
	match_rec_class.cpp

	Function Name
	Module Name

	name_weight_adjusted
	match_rec_class.cpp

	Newcand
	matchware_wrapper.c

	Newlist
	matchware_wrapper.c

	next_item_type
	db_pipe.pc

	num_is_list
	match_rec_class.cpp

	number_candidates
	match_rec_class.cpp

	nysiis_counts
	db_search.pc

	_open_search_cursor_id
	db_search.pc

	open_search_cursor_id
	db_search.pc

	pack_message
	db_pipe.pc

	place_char
	utils.cpp

	place_chars
	utils.cpp

	place_int
	utils.cpp

	_post_heartbeat
	mh_class.cpp

	_post_heartbeat
	mh_class.cpp

	promotion_criteria_met
	application_logic.cpp

	preview_nysiis_counts
	search.cpp

	process_search
	match_engine.cpp

	process_search
	match_engine.cpp

	receive_message
	db_pipe.pc

	recombine
	match_rec_class.cpp

	register_handler
	mh_class.cpp

	resolve_intrastate_status
	application_logic.cpp

	resolve_match_status
	match_rec_class.cpp

	s_init_all_chars
	db_search.pc

	s_init_all_inds
	db_search.pc

	s_init_all_numbers
	db_search.pc

	s_init_all_varchars
	db_search.pc

	s_terminate_all_varchars
	db_search.pc

	_search_and_match
	cm_services.cpp

	search_and_match
	match_engine.cpp

	_search_and_match
	mh_class.cpp

	search_and_rank
	search_and_rank.cpp

	search_condition
	search_conditions.cpp

	self_match
	matchware_class.cpp

	send_message
	db_pipe.pc

	set_best_weights
	match_rec_class.cpp

	sort
	match_rec_class.cpp

	_standardize
	mh_class.cpp

	standardize
	standardize.cpp

	standardize
	matchware_class.cpp

	standardize_and_fetch
	matchware_class.cpp

	stdstr_to_stdrec
	request_utils.cpp

	stdrec_to_stdstr
	request_utils.cpp

	stninit
	matchware_wrapper.c

	unpack_message
	db_pipe.pc

	user_request
	mh_class.cpp

Appendix G. Source Code Description

This Page Intentionally Blank

Introduction

This section of the document is provided as reference guide for the source code of the MatchWare Applications for New MCMIS delivered by JHU/APL. The source code that was provided to the New MCMIS team on a CD in June 2002 and August 2002 follows a specific directory structure, which is described in this appendix. This directory structure must be maintained on the target computer systems to ensure that the environment necessary for MatchWare applications for New MCMIS is established correctly. The reader of this section is expected to know how to develop C/C++ applications in a Microsoft Windows NT/2000 environment using Oracle Pro*C for embedded SQL functions.

G.1 Directory Structure

All source code of all types directly or indirectly related to the MatchWare API resides under a version subdirectory of the API top-level directory. The current version of code resides under \API\V3. All C++ code resides in a directory tree structure underneath \API\V3\cpp on the target application server. The Match Handler PL/SQL resides under \API\V3\SQL on the target database server.

The following outline describes the tree for the C++ code. This document describes the C++ code in the tree that is related to the Match Handler delivered to New MCMIS. Many of the modules in these directories were developed for MatchWare applications for legacy MCMIS and will not be described here.

· cpp\include: All header (.h) files, irrespective of the directory where corresponding source file resides.
· cpp\programs: Modules containing program main functions and Visual C++ project files. Similar programs are grouped in subdirectories. Main module normally includes invocation instructions, argument and switch descriptions.
· match_handler: Directory containing the match handler executable.
· cpp\source

· app_specific: Application-specific code. For example, definitions only used by Safetynet 2000 applications.
· dblib: Pro*C modules.
· common: Utility modules serving all applications.
· matchlib: Application-independent code related to the MatchWare API.
· sql\plsql\match_handler: PL/SQL code providing interface to Match Handler from New MCMIS database-resident code and communicating with the C++ Match Handler executable.
G.2 Module Function Descriptions

Directory: cpp\programs\match_handler

match_handler.cpp

· main. Initialize mh_class object, validate and process invocation arguments and switches, initialize logging, and register the handler with the Oracle pipes communication protocol. Go into event loop forever or until termination condition met.
Directory: cpp\source\app_specific

application_logic.cpp (match_rec_class class)

· Significant variables

· minWt: array of float. Holds predefined weights used for decisions and assignments in the heuristics and the search and match algorithm in general.
· add_recombs. Used when two name/address pairs were passed in the query. This function is used to recombine the name from one name/address pair search with the address from the other if their weights meet a predefined threshold. The recombined record is added to the list.
· adjust_inactives. Drop the weight of an inactive definite to lowest score that is still above the definite match threshold.
· apply_heuristics. Loop through each member of the list going from best to worst until the end of the list or until loop exit condition is met. Use heuristic criteria to determine whether to promote, demote the candidate’s weight, or to leave it alone. Calls promotion_criteria_met and compute_rule_weight.
· check_guarding_condition. Demote a definite match candidate to just below the definite match threshold where its DOT and ICC numbers mis-match, and it has a fair name match, but outstanding address match.
· compute_rule_weight. This is a critical function in MatchWare API, as it encapsulates many sponsor-mandated rules for modifying a candidates score from that which MatchWare assigned it. It contains 46 special conditions for modifying the score. Called by apply_heuristics.
· demote definite. Lower a definite match candidate to just under the definite match threshold.
· detail_string. Fabricate a position-formatted string from candidate information for writing the details output file.
· post​_bat1000_results.Write the list’s result information (result declaration and DOT number if definite match) into the 1000-byte input string.
· post_snet2k_results. Write the list’s result information (result declaration and DOT number if definite match) into the 233-byte input string.
· promotion_criteria_met. Compares name/address search candidates’ name and address weights to the best from the DOT and ICC searches to determine whether the candidate is “promotable.” Called by appy_heuristics.
· resolve_intrastate_status. Queries that are intrastate carriers must be declared either a definite match or definite no-match since they do not undergo the potential resolution process. When the algorithm has declared the query a potential match, this function resolves the declaration using sponsor-mandated rules, which are basically more lenient rules for declaring definites.
search_conditions.cpp (match_engine class)

· search_condition. The match engine has a predefined sequence of database search types that are considered for each query. The match engine interates through that sequence and, for each step in the sequence, calls search_condition to determine whether or not to execute that search type. Search_condition uses the attributes of the query to make that decision and, in types that have multiple search options, to decide which particular search to return.

system_utils.cpp

To increase portability of the MatchWare API, all system-specific functions were relagated to a single module, system_utils.

· append_file. Append one file to another

· compress_files. Use WinZip to compress a file.

· copy_file. Copy a file.

· decompress_file. Use WinZip to decompress a file.

· delete_file. Delete a file.

· delete_file_type. Delete files in a directory of a given type (extension).

· dir_count. Return the count of files in a directory.
· file_exists. Determine whether or not a given file exists in a directory.
· make_dir. Create a directory.
· make_dir_list. Create a listing of files in a given directory.
· move_file. Move a file.
Directory: cpp\source\dblib

db_lib.pc

· db_status. Return sqlcode if negative. If sqlcode is zero or positive (100/1403) return zero.
· db_error. If sqlcode is negative log the database error and an error message passed in as an argument (if any).
· get_db_errmsg. Use Oracle function to retrieve database error message from the database.
· row_not_found. Returns true if sqlcode is positive (100/1403).
· no_more_data. Same as row_not_found
· db_init. Connect to the database with the given host, username and password.
· db_close. Disconnect from the database.
· outline_off. Alter the session to set stored outlining off.
· outline_on. Alter the session to set stored outlining on.
· trace_off. Alter the session to set tracing off.
· trace_on. Alter the session to set tracing on.
db_mh.pc

Non-pipe-related database function for the match handler.

· get_handler_id. Returns a unique integer, which can be used for identifying match handler client requests.
· insert_results. Inserts candidate DOT numbers and MatchWare scores into the search results database.
db_pipe.pc

Since the Match Handler executables run asynchronously, Oracle pipes (package DBMS_PIPE) are used to communicate with them from the match handler PL/SQL. Db_pipe encapsulates calls to the DBMS_PIPE package.

Pipes are database objects and so can be created and dropped.

Messages are created by “packing” numbers and character string message “items” on the pipe. The message is then “sent” over the pipe.

On the receiving end, a session can listen on a pipe for a message. When a message is received, the message “items” are “unpacked”.

· create_pipe. Create a public or private pipe.

· next_item_type. Find out whether the next message item is a number or a character string.

· pack_message. Pack a number or character string into a message.

· receive_message. Listen for a message on a pipe with a given timeout. Return when either a message has been received or the timeout has been reached.

· remove_pipe. Drop the pipe.

· reset_buffer. Clear a pipe’s buffer of any unreceived messages.

· send_message. Send a message over a pipe.

· unpack_message. Unpack an “item” from a “message”.

db_search.pc

Uses dynamic SQL to fabricate and execute all database queries used by the search and match algorithm.

· Significant global variables

· All Pro*C host variables and indicator variables.

· String length definitions.

· Cursor for select from the nysiis_counts table.

· nysiis_counts. Obtain the counts of occurrences of two given NYSIIS values in the reference database from a pre-loaded table.

· open_search_cursor_str. Fabricate a SQL query with predefined select and table-join clauses and a user-defined where clause.

· open_search_cursor_id. Fabricate a SQL query with predefined select and table-join clauses and a where clause

· _open_search_cursor. Use dynamic SQL to prepare the fabricated SQL statement and then use the prepared statement to open a SQL cursor. Bind variables are passed to the cursor open statement depending on which search is being executed.

· fetch_search_cursor. Fetch rows from the previously opened cursor into host arrays (one for each column). Each array can hold up to 1000 elements.

· close_search_cursor. Close the dynamic SQL cursor.

· s_init_search_strings. Initialize an array of “where clause” strings for the predefined database searches.

· s_assign_searchrecs. Assign host variable values to record fields in an array of those records. Takes place after each database fetch. The array of records is passed back to the calling function.

· s_init_all_chars. Initialize all character-type host variables.

· s_init_all_numbers. Initialize all numeric-type host variables.

· s_init_all_varchars. Initialize all varchar-type host variables.

· s_init_all_inds. Initialize all indicator variables.

· s_terminate_all_varchars. After fetching, null-terminate all varchar host variables.

db_vars.pc

· Significant global variables. db_vars.pc has not source code. It contains host variable declarations that are used by other Pro*C modules. Db_vars.h has an extern statement for each variable declared in db_vars.pc. The other modules access the global variable declarations in db_vars.pc by including db_vars.h.
varchar_utils.cpp

For manipulating varchar host variables, handling the len and arr fields and the indicator variable.

· assign_vc_from_lstr. Assigns one position-delimited field from a long string into a varchar variable. If field is all blanks, assigns null to the varchar.
· assign_vc_from_lstr2. Same as assign_vc_from_lstr, except that if the field is all blanks, it assigns those blanks to the varchar.
· assign_varchar. Assign a varchar from a C character string.
· init_varchars. Initialize a varchar host variable.
· init_indicators. Initialize an array of indicator variables.
· terminate_varchars. Null terminate the varchar arr field based on the varchar’s len field and indicator variable.
Directory: source\common

Sqlglm.c

A wrapper for Oracle’s sqlglm function for getting error messages.

debug.cpp

Contains a global Boolean. Allows for centralization of control of whether to print debug messages or not. Other modules merely include debug.h

log.cpp

Centralizes logging to a single file into a C++ class. Enables printing to STDOUT in addition to the log file.

· _init. Opens the log file and initializes class variables.
· log_class. Overloaded class constructor. Each version calls _init.
· _print. Prints to the log file.
· print. Multiply overloaded function to enable differing numbers of arguments. All call ​_print.
msglog.cpp

Consolidates and simplifies logging for the Match Handler API.

· init_msgfiles. Initializes the message and error files that the API writes to.
· log_err. Logs a message to the message file.
· log_msg. Logs a message to the error file.
struct_defs.cpp

Utility functions for API record structures.

· init_stnrec. Initializes all fields in one or more stdz_rec_type record.
· cout_stnrec. Outputs the fields in a stdz_rec_type record.
· init. Initializes all the fields in a request_rec_type record.
utils.cpp

Utils.cpp contains functions, which perform relatively simple tasks which are performed frequently. Often the functions will add error handling and safety features such as string boundary protection that their similar C functions neglect.

· assign_dbchar. Assigns a character to a Pro*C character (not varchar) host variable. Handles the indicator variable too.
· assign_dbchar_from_lstr. Assigns a single character from a position in a long string to a Pro*C character host variable. Handles error conditions and indicator.
· assign_dbint_from_lstr. Assigns positionally defined numeric character data in a long string to an integer, handling the indicator. Calls assign_int_from_lstr.
· assign_int_from_lstr. Assigns positionally defined numeric character data in a long string to an integer. Protects string boundaries and attempts to convert non-numeric characters.
· assign_onechar. Assign a char into a character string variable.
· assign_str_from_lstr. Assign a position-defined field within a long string to a C string.
· change_suffix. Substitute a filename’s suffix with some other.
· char_from_lstr. Extract a single character from a long string.
· convert_date. Convert a date string in month/day/year date format (e.g., may/02/2002) to yyyymmdd format (e.g., 20020502), or visa-versa.
· datestr. Return a date-stamp string for today’s date in format dd_mon_yyyy (e.g., 02_may_2002).
· datetimestr. Return a string with the current date- and time-stamp. Calls the standard C ctime function.
· fab_timestamp. Returns the current date in a string formatted mm-dd-yyyy (e.g., 05-02-2002).
· isnumeric. Returns non-zero (true) if a non-blank string contains only numeric digits.
· longStrcmp. Compares a position-defined field within two long strings. Returns 0 if they are the same (mimicking C’s strcmp).
· lstrcpy. Copy a position-defined field within a long string into a target character string.
· my_asctime. Converts a date in format yyymmdd to that returned by C’s asctime function.
· nocase_strcmp. Does a case-insensitive string comparison of two strings, returning the same values as strcmp.
· non_blank. Returns non-zero (true) if the string argument is non-blank.
· non_zero. Returns zero (false) if the string argument contains only zeroes, otherwise non-zero (true).
· non_blank. Returns non-zero (true) if a position-defined field within the long string argument is non-blank.
· non_zero. Returns zero (false) if a position-defined field within a long string argument contains only zeroes, otherwise non-zero (true).
· pad_leading_zeroes. Fill a character string to its full allocated length with its original string value and leading zeroes.
· place_char. Place a single character into its defined position within a long string.
· place_chars. Place a character string into its defined position within a long string.
· place_int. Place an integer into its defined position within a long string.
· safe_atoi. Convert a character string to an integer with error checking. Returns zero if the string contains non-numeric data.
· safe_strcpy. String-boundary protecting version of C’s strcpy.
· safe_strncpy. String-boundary protecting version of C’s strncpy.
· something_there. Returns zero if string argument is null or all blanks, otherwise non-zero.
· Something_there. Returns false if string argument is null or all blanks, otherwise true.
· strcmp_with_strip. Performs a C strcmp on two character strings, stripping any leading zeroes from local copies of both strings first. Returns the same values as strcmp.
· strcpy2. Same as lstrcpy, only safer.
· strip_leading_zeroes. Return the string argument with any leading zeroes stripped off.
· strip_trailing_blanks. Returns the string argument with any trailing blanks removed.
· substr. Return the substring of the string argument starting at a given position and of a given length.
· timestr. Return a time stamp string formatted hh_mm_ss.
· to_lower. Convert all characters in the string argument to lower case.
· to_upper. Convert all characters in the string argument to upper case.
Directory: source\matchlib

cm_services.cpp
· cm_services. Create matchlib and match_engine objects.
· ~cm_services. Delete the matchlib and match_engine objects.
· db_connect. Connect to the Oracle database.
· interStd. Calls the matchlib standardize function.
· interMatch. Overloaded interface to search and match functionality for the interactive Match Handler. Calls _search_and_match.
· doubleMatch. Processes input files of carriers represented by two name/address pairs in what is known as “1000-byte” format. For each record, calls _search_and_match, and then posts the results to predefined output files.
· _init_totals. For the batch processing functions – doubleMatch and singleMatch – cm_services tabulates counts of input characteristics and result information. _init_totals zeroes out all the counters.
· _log_totals. Formats the tabulated counts and logs to a file stream.
· _search_and_match. Private function called by all public functions providing batch or interactive search-and-match functionality. Completely processes one carrier represented by one or two name/address pairs. When two pairs are provided, it calls match_engine.process_search twice, and attempts to recombine the results of the two searches to obtain better results. Finally the three results lists are merged and a single list is returned. When one pair is provided, process_search is only called once and the recombine step is skipped.
· singleMatch. Processes input files of carriers represented by one name/address pair in the 233-byte format defined by the Safetynet 2000 crash and inspection reports. For each record, calls _search_and_match, and then posts the results to predefined output files.
match_engine.cpp
· match_engine. Create a matchlib object and an array of match_rec_class objects.
· ~match_engine. Delete the array of match_rec_class objects.
· convert_input. Convert input from request_rec_type format to stdz_rec_format.
· find_best_name_addr. Find the best name weight and address weight from the DOT and ICC carriers in a results list.
· merge_searches. Merge all the results list in the array of match_rec_class that contain any results into a single results list. Calls match_rec_class.merge.
· process_search. Main entry point of the match_engine class for a given carrier query defined by a single name and address. Makes sure the carrier input is standardized. Loops through the predefined search steps, calling match_engine’s search_and_match function to query the database and score the results for each search executed. Merges the results into a single results list.
· search_and_match. Completely processes a single search for a carrier query. Calls matchlib’s search_and_rank function and applies the heuristics to adjust the MatchWare-assigned weight.
match_rec_class.cpp
The match_rec_class class has three categories of methods: (1) List handling functions like sort, merge, and pop. (2) List processing functions, like adjust_name_weights, which adjusts the name weight of each list member based on certain heuristic criteria. (3) List state functions. For example, whether the list contains an active definite. A list index number can be supplied to these functions: if none is supplied, then the “current” element will be queried. Match_rec_class keeps track of the current list top as the list is being traversed using the pop function.

· Significant class variables

· match_rec_array. An array of records of type match_rec_type. This is the candidate list around which the match_rec_class functions revolve.
· count. Number of candidates in the list.
· position. Array index of the current “stack top.” Position allows match_rec_class to treat its internal array of records as a stack.
· minWt. Array of predefined weights for manipulating, comparing and assigning MatchWare and heuristic scores.
· match_rec_class. Initializes class variables, particularly match_rec_array by calling init.
· ~match_rec_class. Deallocates the match_rec_array candidate list.
· add. Adds multiple records to the match_rec_array. Maintains uniqueness of dot number in the list. Reallocates the list based on the number of new, unique records it is adding.
· add_one. Adds one new record to the match_rec_array in similar fashion to add.
· name_weight_adjusted. Considers adjusting a candidate’s name weight according to heuristic criteria. If adjusted, reflects that change in the overall weight and returns true. If unchanged, returns false.
· adjust_name_weights. Traverses the match_rec_array candidate list, calling name_weight​_adjusted for each element. Resorts the list if any candidates had their weight(s) adjusted.
· confirmed_dotno. Returns a character string with the confirmed DOT number if the query has been confirmed a definite match. Otherwise returns a null string.
· cout_item. Returns a long character string with a formatted listing of a candidate’s attributes.
· cout_mrc. Formats and prints up to the top 25 candidates in the list to STDOUT.
· cut_low_cands. “Discards” candidates with low weights by changing the count variable to not include their indices. Uses a higher threshold for queries declared a definite match versus those declared a potential match.
· definites_exist. Returns true if the list contains at least on definite match candidate.
· defmatch. Returns true if the list has been declared a definite match.
· doticc_match. Returns true if the current candidate matches the query’s DOT and ICC numbers.
· dot_in_list. Returns true if the DOT number argument is the same as a candidate currently in the list.
· effective_weight. Returns a candidate’s effective weight, which is always the MatchWare weight before heuristics application and the heuristic weight thereafter.
· end_of_stack. Returns true if there are no more elements to for pop to return from the list. Internally, when the list position variable equals the number of elements in the list.
· find_best_weights. Returns the best name and address weights from the ICC and DOT candidates in the list (if any).
· fout_mrc. Formats and prints up to the top 25 candidates in the list to a file.
· how_many. Returns the number of candidates in the list.
· in_range. Returns true if the integer argument is between 0 and the number of candidates in the list.
· init. Class method that initializes class variables, particularly match_rec_array.
· init. Initializes one or more match_rec_type records. Not a class method.
· is_active. Returns true if the candidate is an active carrier.
· is_definite. Returns true if the candidate’s score meets the definite match threshold.
· is_dot_match. Returns true if the candidate’s DOT number is the same as the query’s.
· is_icc_match. Returns true if the candidate’s ICC number is the same as the query’s.
· is_in_list. Same as num_in_list, but returns true if the candidate is in the list instead of its position and false if it is not instead of –1.
· is_mw_definite. Returns true if the candidate’s MatchWare (as opposed to effective) weight meets the definite match threshold.
· is_potential. Returns true if the candidate’s weight meets the potential match threshold but is less than the definite match threshold.
· item. Returns a C pointer to the specified candidate in the list. Defaults to the current candidate if no index argument supplied.
· merge. Takes an array of match_rec_class objects as arguments and merges them all into the objects candidate list. Merge excludes duplicates, preserving the best candidate for any DOT number.
· minMinus. Returns the float value from the minWt array for the integer argument with a ten-thousandth shaved off. Used to compare MatchWare result scores to values in the minWt array to avoid problems resulting from floating point rounding.
· minPlus. Returns the float value from the minWt array for the integer argument with a ten-thousandth added on. Used to compare MatchWare result scores to values in the minWt array to avoid problems resulting from floating point rounding.
· multiple_definites. Returns true if the list contains more than one definite match candidate.
· nomatch. Returns true if the list has been declared a definite non-match.
· num_in_list. Takes an argument of match_rec_type. Finds the argument’s position in the candidate list based on a predefined comparison criteria (normally DOT number match). Returns –1 if the argument is not in the list.
· number_candidates. Returns the number of candidates in the list.
· outcome. Returns the single character representation of the numeric query declaration.
· pop. Returns a C pointer to the current candidate in the list. Treats the list as a stack. Used for traversing the candidates in the list. Internally, pop returns a pointer to the record at array index position, and then increments position by 1.
· potentials_exist. Returns true if the list contains at least one candidate that meets the potential match threshold but is less than the definite match threshold.
· potmatch. Returns true if the list has been declared a potential match.
· reccmp. Compares two match_rec_type records. Returns 0 if they are the same. Normally compares only DOT number.
· recomb_rec. Takes two match_rec_type records as arguments. Combines the name components of one to the address components of the other into a new match_rec_type record and returns the new record.
· recombine. Takes two match_rec_class candidate lists as arguments. Attempts to recombine names and addresses from the two lists for like DOT numbers that have better scores than the candidates in the original two lists for that DOT number. Any recombination candidates found are added to a third list.
· remove_duplicates. Not used.
· reset_stack. Resets the “stack pointer” to the “top” of the stack. Internally, sets the position variable to 0.
· resolve_match_status. Using simple logic plus special rules set down by FMCSA, declare the overall query result from the list of candidates.
· result. Returns the integer list result declaration.
· search_type. Return the search Id for the database query used to populate the list.
· seek_dotnum. Seeks the position in the list where the DOT number argument is found. Internally sets the position of the position variable to that array element’s index.
· set_best_weights. Returns the best name and address weights for a candidate list containing only DOT number candidates or ICC number candidates.
· sort. Sorts the candidates in descending order of effective weight. Uses MatchWare weight to break a tie.
· top. Returns the array index of the current stack top. Internally, returns the value of the position variable.
· usdotnum. Returns the DOT number of the current candidate.
matchlib.cpp
· _read_params. Read in the label-value pairs from the parameters file. These tell the MatchWare configuration files to use.

· _constructor. Initialize the matchlib object. Open the log files, instantiate the combined MatchWare_class object, assign values to the nysiis_max array.

· matchlib. Calls _constructor.
· ~matchlib. Deletes all MatchWare_class objects.

· init_db. Connects to the database.

MatchWare_class.cpp
· add_candidate. Add a candidate to the MatchWare environment for later matching against the query candidate.
· _constructor. Initialize class variables.

· dip. Performs a single-candidate match against a query. Used for obtaining name, address, USDOT, or ICC weight.
· fetch_candidate. Fetch a matched candidate from the MatchWare environment given its candidate index number.
· fetch_next_candidate. After matching, the candidates can be fetched in ranked order, best first. Fetch_next_candidate returns the next-best candidate until there is none left.
· end_matching. Makes MatchWare function calls needed to clear the MatchWare environment of candidates.
· error_message. Returns the MatchWare error message when there was a MatchWare error.
· extract_fields. When a candidate is fetched after matching a formatted string is return. Extract_fields parses the carrier components into a record structure from that string.
· fetch_keys. Fetches the standardized fields from the MatchWare environment after standardizing. Some of the keys are used for searching the database for candidates.
· _keycpy. After standardizing a carrier, _keycpy fetches a specified field value out of the MatchWare environment and copies it into a C string. The field to fetch is specified to MatchWare using the field’s key identifier. The key identifiers are specified in the configuration files.
· init. Initialize MatchWare environment with specified configuration files.
· _make_match_input_str. Accepts a candidate carrier in the form of a C record structure and fabricates a MatchWare candidate string by mapping the record fields to their positions in the string.
· _make_stdz_input_str. Accepts a query carrier in the form of a C record structure and fabricates a MatchWare standardization string by mapping the record fields to their positions in the string.
· match_candidates. Once all the candidates have been loaded into the MatchWare environment, instruct MatchWare to score them against the query carrier.
· MatchWare_class. Invoke _constructor. Takes configuration type as an argument.

· ~MatchWare_class. Deallocate MatchWare class globals.

· number_candidates. Returns the number of candidates loaded into the MatchWare environment for matching.
· _push_key. Forces a value for a field into the MatchWare environment’s Match Key. The field is specified using its key identifier (see _keycpy, above).
· _setkeys. Although standardizing initializes most fields in the Match Key for matching, some fields need to be manually initialized using _push_key. _Setkeys does so for all fields that need it.
· standardize. Accepts a record containing the carrier information, fabricates a specially formatted string with that information, and calls the MatchWare standardize function with that string.
· standardize_and_fetch. A convenience function: calls standardize and fetch_keys functions, above.
· self_match. Match a carrier against itself.
MatchWare_defs.cpp

· Significant variables

· stdpos. Field position definitions for the string sent to MatchWare when standardizing a carrier.

· stdlen. Field length definitions for the string sent to MatchWare when standardizing a carrier.

· mwpos. Field position definitions for the string sent to MatchWare when adding a candidate.

· mwlen. Field length definitions for the string sent to MatchWare when adding a candidate.

MatchWare_wrapper.c

The actual MatchWare callable library functions are not callable from C++. MatchWare_wrapper functions are simply single MatchWare functions wrapped in such a way as to enable C++ code to call them. For information on what each MatchWare function does, see the MatchWare documentation.

mh_class.cpp
· _admin_request. If there is a message on the administrative pipe, unpack it and respond to it.

· _heartbeat. Each match handler that gets started up has its own heartbeat file. Each match handler gets started up with a specified interval of time over which it should listen for a user request on the request pipe. It has a second interval, which is the frequency with which it should post a timestamp to the heartbeat log file. At the pre-defined listening interval, call _admin_request. If the heartbeat interval has transpired, call_post_heartbeat.

· _post_heartbeat. Post a timestamp to the heartbeat file.

· register_handler. Instantiate cm_services object. Create an administrative pipe according to its unique handler Id. Open the log file and heartbeat file.

· search_and_match. Unpack the search request arguments from the pipe, including the user pipe id and the request string. Call cm_services.interMatch with the arguments. Pack the results into the user’s pipe and send them back.

· Standardize. Unpack the standardize request arguments from the pipe, including the user pipe id and the string to standardize. Call cm_services.interStd with the arguments. Pack the results onto the user’s pipe and send them back.

· user_request. Wait for a user request on the request pipe for the pre-defined interval. If a request comes, determine the request type, calling _search_and_match or _standardize accordingly.

rank.cpp
· init_ranking. Initializes any MatchWare environments not already initialized, Standardizes the carrier query in each environment, thereby initializing its match key, and prepares the default (full) MatchWare environment for matching.

· add_candidates. Adds one or more candidates to the MatchWare environment.

· do_ranking. Use MatchWare to match the candidates against the carrier query, all of which have previously been loaded into the MatchWare environment. Fetch the candidates in ranked order until the weights begin to fall below a predefined threshold. For each qualified candidate, send it to the four specialized MatchWare environments to determine its component weights. Adjust the name component weight when necessary, adjusting the combined weight accordingly. Add the candidate to the match record list (see match_rec_list).

· end_ranking. Calls the MatchWare_class.end_ranking function.
· rank. A stand-alone function that takes a standardized carrier query as stdz_rec_type, and an candidates as array of search_rec_type. Rank adds all the candidates to the MatchWare environment, invokes MatchWare to rank them, ends the ranking, and then returns a match_rec_class object with the results.

search_and_rank.cpp

· search_and_rank. Overloaded function which calls _search_and_rank.
· _search_and_rank. If the carrier query has not already been standardized, ​_search_and_rank does so now. Opens a database cursor with the current search definition. Fetches candidates from the database in batches of 1,000. Adds all candidates from each batch fetched to the MatchWare environment. Once all candidates have been fetched from the database, calls matchlib.do_ranking to invoke MatchWare to rank the candidates. Lastly it adjusts the name weights using heuristic criteria by calling match_rec_class.adjust_name_weights.
Standardize.cpp
· Standardize. Standardizes one or more carriers. For each carrier name and address pair passed, it captures all the standardized field values the return (C++) record structure and additionally matches the carrier against itself.

· upd_ins_stn_tbls. Accepts an array of standardized records and sends them to a Pro*C function that checks for existence of each record and then updates or inserts accordingly.
· stdz_and_updins. Accepts an array of unstandardized records, standardizes them, and sends them to a Pro*C function that checks for existence of each record and then updates or inserts accordingly.
· stdz_and_update. Accepts an array of unstandardized records, standardizes them, and updates the database with the results.
· stdz_and_insert. Accepts an array of unstandardized records, standardizes them, and inserts the results into the database.
· reconcile_std_tables. Determines which, if any, carriers in the database have been updated without having their corresponding rows in the standardization tables updated (or inserted). Standardizes those carriers and updates or inserts into the standardization tables as needed.
Directory: sql\plsql\match_handler

With one exception, each Match Handler PL/SQL package has a specification and a body. The body’s file name is the same as its specification, with “_body” appended to it. New MCMIS naming conventions are used throughout.

pkg_match_handler

· Purpose. The Match Handler interface package. Contains all callable PL/SQL functions providing MatchWare services. All functions return 0 for success, 1 for timeout, anything else for an error.
· Callable Functions and Procedures

· General: All the pkg_match_handler functions have the following in common:
· They are either passed or generate a unique identifier that is used name a pipe which they create to receive their response from the Match Handler executable.
· They convert their arguments to a format in which they can easily be packed into the pipe message.
· Message items on all outgoing and incoming messages must conform to a predefined order expected by the Match Handler executable as well as these PL/SQL functions.
· Match Handler requests are sent to the Match Handler executable on the (permanent) request pipe.
· They listen on their own, uniquely named, temporary, response pipe for their request’s response from the Match Handler executable.
· When (and if) the response message is received, the message items are unpacked in the predefined order. Absence of an item or an item of the wrong data type is reported as an error.
· fnc_search_and_match. Called by the New MCMIS registration module. Intended to provide interactive search and match functionality. Requires at least one full name and address. Returns number of candidates (if any) found. The candidate DOT numbers and weights are inserted into the mh_results table. Calls fnc_cm (below).
· fnc_carrier_match. Called by the New MCMIS Crash and Inspection report processing module. Can also be used for batch adds and OP1 processing. Requires one full name and address. US DOT number and/or ICC number improve the results. Returns the query declaration – confirmed definite match (C), potential match (P), or definite no match (N). If (and only if) the result is potential match, candidate rows will be inserted into the mh_results table and the number of rows inserted will be returned along with the query result. Calls fnc_cm (below).
· fnc_standardize. Used by New MCMIS to update the Match Handler reference tables with new Carrier data. Accepts a name and/or an address and returns the standardized fields.
· fnc_cm. Processes search and match requests for fnc_search_and_match and fnc_carrier_match (which are really merely wrappers for fnc_cm). Implements the design described in the Match Handler appendix.
pkg_mh_admin

· Purpose. Functions used for sending administrative messages to asynchronous Match Handlers. Uses the administrative pipe instead of the request pipe. The Match Handler breaks from listening for a request and checks the administrative pipe according to wait time it was started with (/w switch – default 1 minute).
· Functions and Procedures

· fnc_ping_handler. Sends a “ping” message to the Match Handler which forces it to post a timestamp to the heartbeat file, even if it has not reached the heartbeat interval.
· fnc_terminate_handler. Sends a “terminate” message to the Match Handler which causes it to gracefully terminate itself. This would be the only way to terminate a Match Handler running in the background.
pkg_mh_defs

· Purpose. All record and constant definitions needed for users of the pkg_match_handler functions. Pkg_mh_defs has no functions and no package body. Package pkg_mh_idefs contains functions for manipulating data types in pkg_mh_defs.
· Public Variables

· Return codes. Integer codes returned by the match handler functions indicating,
· success,
· one of a number of pipe-related errors,
· a Match Handler application error.
· wr_searchRec. Record structure used to pass query fields to the search-and-match functions.
· wr_stdinRec. Record structure used to pass carrier name and address to the standardization function.
· wr_stdoutRec. Record structure used to pass standardized fields back from the standardization function.
· Functions and Procedures: none.

pkg_mh_idefs

· Purpose. Three record types are used as arguments to pkg_match_handler functions. Internally, these arguments are converted to a character string for sending over the Oracle pipe. Pkg_mh_idefs contains the functions that map the record fields to their respective positions in the string.
· Strategy.

· Pkg_mh_idefs uses a data-driven approach for ease of maintenance in the event of changes to the MatchWare configuration files (which could be – and has been – the result of database changes) as well as code readability, as follows:
· A constant integer variable is created as an identifier for each field in each record. Each constant is assigned an integer value that is unique for its record.
· Two PL/SQL tables for mapping record fields to their corresponding offset and length within the character string are declared for each record type. Each field’s constant identifier defines its position within each of the two tables.
· Aggregate initializations are used to assign field position and field length values to the position and length tables, respectively, for each record type. IMPORTANT NOTE: These definitions must agree exactly with those found in the MatchWare configuration files aplmatch41.rul and cmatch41.stn, and C++ file MatchWare_defs.cpp.
· There is also a PL/SQL table of varchars containing the field names, not used by the pkg_match_handler functions, indexed in the same manner as the position and length tables.
· Package Data Types

· numType. PL/SQL table of smallint. Used in package variable definitions.
· strType. PL/SQL table of varchar2. Used in package variable definitions.
· Package Variables

· Field identifier constants. See Strategy discussion, above.
· vavv_results. Used for mapping the query result declaration number returned over the pipe to a single character.
· vavi_slen, vavi_spos, vavv_snames. The field length, position, and name tables corresponding to mh_defs.wr_searchRec.
· vavi_stiLen, vavi_stiPos, vavv_stiNames. The field length, position, and name tables corresponding to mh_defs.wr_stdinRec.
· vavi_stoLen, vavi_stoPos, vavv_stoNames. The field length, position, and name tables corresponding to mh_defs.wr_stdoutRec.
· Callable Functions and Procedures

· fnc_search_rec_to_str. Accepts a carrier query record of type mh_defs.wr_searchRec and maps its values into a varchar2 string.
· fnc_stdin_rec_to_str. Accepts a carrier name and address in a record of type mh_defs.wr_stdinRec and maps its values into a varchar2 string.
· fnc_str_to_stdrec. Accepts a varchar2 string containing a carrier’s standardized name and address values. It maps those position-defined field values into a record of type mh_defs.wr.stdoutRec.
· fnc_result_declaration. Returns a character from vavv_results given the integer input. Does input value check.
· prc_search_positions, prc_stdin_positions, prc_stdout_positions. These functions provide a way to double check the values in the length and position tables by deriving the string positions from the field lengths. The derived positions must agree with the corresponding entries in the position table. (SLQ*Plus script positions.sql, located in the same directory as this PL/SQL, runs these procedures).
· Private Functions and Procedures

· Package initialization section. Initializes all package tables.
· fnc_mysubstr. Utility function which returns a string substring given a source string, an offset (position), and substring length. Used when mapping from a position-defined string to a record structure.
pkg_mh_pipe

· Purpose. Wraps calls to Oracles dbms_pipes package with error handling.
· Important Package Variables

· cv_request_pipe. Varchar2 constant defining the name of the request pipe.
· Functions and Procedures

· fnc_delete. Drops an existing pipe.
· fnc_new. Creates a new pipe.
· prc_pack. Packs an integer or character string item onto a pipe.
· fn_receive. Waits for a given length of time for a message on a pipe.
· fnc_send. Sends a message on a pipe.
· fnc_unpack. Unpacks an integer or character string item from a pipe.
Appendix H. MatchWare Services API

This Page Intentionally Blank

The terms “MatchWare Services API,” or just “API” refer to the Application Programming Interface developed at APL, which provides packaged MatchWare functionality to programs without requiring knowledge of the somewhat esoteric details of using MatchWare.

In reality, there is a hierarchy of four APIs. Each one is at a higher level of abstraction from the MatchWare libraries and provides more application-specific processing. The MatchWare Services API employs the Object Oriented paradigm wherever possible, and all four APIs are written as C++ classes. Each API has a single header file but some are implemented in multiple source modules. Each API fully incorporates the API at the level beneath it, sometimes multiply instantiating it. The APIs are, from lowest to highest:

· MatchWare_class

· Matchlib

· Match_engine

· CM_services

A non-API class of great importance within the API is the match_rec_class class It serves as a container for the MatchWare-processed search and match results. Its numerous methods provide the information that MatchWare Services API clients are primarily interested in. The db_searches module implements the database queries, which are inextricable from the API’s logic. Since it is a precompiled Pro*C module with embedded SQL, it was not implemented as a class.

H.1 MatchWare

The MatchWare callable library functions work within an environment that must be initialized before being used. Special MatchWare configuration files contain that initialization information. These configuration files may be customized in numerous ways, and the APL in conjunction with MatchWare has customized a set of them for this application. Additionally, there are special configuration file sets for matching just on name, address, USDOT Number, or ICC Docket Number

H.2 MatchWare Services API Class Descriptions

It is easiest to understand the API classes by starting with the MatchWare_class API and working upwards through the hierarchy of APIs, since each successive class in the hierarchy makes calls to the one below it. They will be presented here in that order. Two important support modules will also be described here.

All header files are located in the \api\v3\cpp\include directory. All source files are located in the indicated subdirectory of \api\v3\cpp\source. See Appendix G, “Source Code Descriptions” for details about each function.

· MatchWare_class

· Background: MatchWare Callable Library Functions

· Description

· The MatchWare_class API provides one level of abstraction up from the MatchWare library functions. It groups MatchWare library calls together into related functions and packages all data elements required by the MatchWare library functions within the class.

· Each MatchWare_class instantiation encapsulates its own, independent, MatchWare environment.

· The MatchWare class functions fall into two categories: those having to do with standardizing and those having to do with matching.

· The procedure for matching is as follows:

· Initialize the MatchWare match key by standardizing the query carrier.

· Add match candidates (usually obtained from database searches) to the MatchWare environment.

· Match the match candidates against the match key.

· Fetch the candidates out in ranked order, along with their scores.

· Variables

· MatchWare environment globals.

· Header: MatchWare_class.h

· Source Modules: MatchWare_class.cpp

· Matchlib

· Description

· The Matchlib class is the API which has the highest level of abstraction from the MatchWare library functions while still maintaining application independence.

· Matchlib bundles MatchWare and database tasks into convenient functions according to the search and match algorithm developed at APL.

· Key functions are standardize, search, rank, and search-and-rank.

· The Matchlib API uses the MatchWare_class API and is used by the Match_Engine API.

· Variables

· Array of MatchWare_class objects. One object for each match type: full, name, address, dot, icc. See MatchWare_class.

· Array of rule file names. Corresponding to each MatchWare class object, the rule file used to initialize that MatchWare environment.

· Nysiis_max: two dimensional array specifying maximums counts used to determine whether to perform NYSIIS searches.

· Header: matchlib.h

· Source modules: matchlib\matchlib.cpp, matchlib\standardize.cpp, matchlib\rank.cpp, matchlib\search.cpp (not used in match_handler) and matchlib\search_and_rank.cpp.

· Match_rec_class

· Description

· The match rec class is used to capture the results of one database search, and the MatchWare processing of those results.

· Match rec class contains numerous functions for processing, manipulating, and providing information about the search/match results.

· Variables

· Processing flags

· List state flags

· List position index.

· Search type

· Return threshold

· Static array of various weight thresholds.

· Integer result declaration.

· The results list. The list is implemented as an array of records. The records are type match_rec_type, defined in struct_defs.h, which has the following attributes:

· USDOT Number

· weights

· number of word tokens in the name

· active/inactive status

· candidate string used by MatchWare containing all the carrier information.

· Header: match_rec_class.h; See also struct_defs.h.

· Source modules: matchlib\match_rec_class.cpp, app_specific\application_logic.cpp

· Db_searches

· Description

· A key component of the API are the database searches, performed according an algorithm developed at APL and based on an analysis of the input. The db_seaches Pro*C module contains all the C and embedded SQL code for performing the analysis and all the searches.

· Db_searches.pc includes search_defs.h, in which the database queries are defined.

· The search sequence algorithm itself is implemented in the search_conditions.cpp module of the match_engine class.

· Variables

· Header: db_searches.h

· Source Modules: dblib\db_searches.pc
· Match_engine

· Description

· Third level API. Calls Matchlib functions and is called by the cm_services API.

· Encapsulates the complete search and match algorithm for a single query consisting of one name, one address, and optionally DOT and/or ICC number.

· Analyzes the input, customizes the sequence of database searches for that input, iteratively performs the database searches and processes the results through MatchWare, heuristically alters the results, analyzes the results to determine when to stop searching for better candidates, and declares the query result based on its analysis of the results.

· Variables

· Various processing-related Booleans.

· Thresholds.

· Parsed carrier query fields.

· Instantiation of matchlib.

· An array of lists of type match_rec_class.

· Header: Match_engine.h

· Source Modules: matchlib\match_engine.cpp, app_specific\search_conditions.cpp

· CM_services

· Description

· Highest level API; most application-oriented. Provides search and match functionality packaged for processing Safetynet Crash and Inspection reports, batch add procedures, weekly OP1/MCMIS reconciliation files, and for processing interactive requests from the Match Handler.

· All of its public methods servicing the various applications have, at their core, a call to private method _search_and_match. _Search_and_match centralizes carrier query processing utilizing calls to the match engine class.

· Calls Match_Engine functions; is called by mh_class functions and by the Carrier_Match and DoubleMatch programs (legacy support).

· Variables

· Match_engine object

· processing flags

· Matchlib objects.

· Header: cm_services.h

· Source Modules: matchlib\cm_services.cpp

Appendix I. Carrier Search and Match Algorithm Adaptation

This Page Intentionally Blank

This appendix contains the JHU/APL Memo dated August 6, 2001 that documents the enhancement to the Carrier Search and Match Algorithm to process queries containing 2 pairs of Name and Address.

[image: image16.jpg]JOHNS HOPKINS Applied Physics Laboratory

Laurel MD 20723-6099
N1V ERISTITITY

PSE-01-047

 August 6, 2001

To:

Distribution

From:

P. A. Frank / P. R. Karnik

Subject:
Matchware Search Algorithm Adaptation

Introduction

APL’s Matchware Search Algorithm has been used in Carrier Match to successfully process daily crash and inspection reports from the states for the Federal Motor Carrier and Safety Administration (FMCSA). It was proposed to leverage this matching capability to a new genre of applications whose input consisted of two pairs of names and addresses. Since Carrier Match’s input consists of one name/address pair, it couldn’t be used as-is. APL therefore undertook the adaptation of the existing software to the double name/address pair input. Additionally, the results database, SQL scripts, and Perl scripts required modification. The purpose of this memorandum is to discuss this adaptation, document its requirements, discuss their impact, and describe the solutions arrived upon.

Requirements

The requirement from these new applications to search and match with queries containing two names and addresses resulted in enough differences from existing software to warrant separate searching and matching code. However, for reasons discussed below, the decision was made to adapt the existing software, even though it was in use in the operational prototype.

Much of the supporting software – that which stores, manipulates, and outputs the results from Carrier Match – was prototypical in nature and not easily adapted to new applications. Furthermore, the propagation of new uses being found for the Matchware Search Algorithm was a trend that only promised to continue. It was, therefore, seen as an implicit requirement that this adaptation be designed such that new needs could be easily accommodated with little or no software change.

The following requirements for adaptations and enhancements were applied to version v1.2 (currently in system test) of the Matchware Search Algorithm. The source version was v1.1.

· Use Matchware to process state batch uploads, OP1/MCS150 Reconciliation, and MCS150 batch jobs. (OP1 is the application for operating authority used by the Licensing and Insurance branch of FMCSA; MCS150 is the motor carrier identification report used for issuance of new US DOT numbers by FMCSA).

· Declare query results using potentially different criteria than Carrier Match uses for daily crash and inspection reports.

· Reconcile operator-supplied locators and/or potential match resolution results with their original records and append to the 1000-byte return file.

· Input:

· 1000-byte format defined by sponsor with input from development team, including APL.

· Resolved potentials files from operator.

· Output:

· 1000-byte format. Updated with declared query status and declared DOT number (when confirmed match).

· Locator files. Used by operator to specify locators for new carriers.

· Unresolved Potentials files. Used by operator to resolve potential-result-queries into definite match or no match result. Use same file format as with daily crash and inspection reports.

· Details files in human-readable format.

Impact Analysis

In analyzing the impact of these requirements, the recurring themes were the need to avoid divergent code (branches of the same code which have only slight differences) and to maximize code re-use. These applied to all areas of the Matchware Search Algorithm program – the C++ code, database design, SQL scripts, and operating system-level Perl scripts.

· The single-pair matching algorithm could not be adapted as it was to double-pair queries. This presented the undesirable possibility of separate search and match engines for single- vs. double-name/address pair applications.

· The methods that the Matchware Search Algorithm used for declaring the outcome for each query were partially based on FMCSA directives. The new applications had some different requirements for declaring outcome. This, too, could have forced implementation of divergent matching algorithms.

· Since the matching code is the heart of APL’s search and match engine, any changes to it have always required rigorous verification testing. Divergent code would double the maintenance load for any future fixes or enhancements to the match engine.

· Any changes affecting software in the existing single-pair match engine would have impacted the Volpe Center’s operational prototype.

· Two name and address pairs equate to a costly four database searches (the cross product of the pairs).

· Each application required different output, causing a geometric increase in the number of new SQL scripts.

· Any new applications found for the Matchware Search Algorithm in the future might repeat some or all of the above problems.

Software Design Solutions

Most of the above problems were resolved by adhering to the following guidelines whose common threads are employing consistency and code sharing to avoid divergent code, while providing adaptations for application differences within shared executables and scripts.
1) Use the same match algorithm and match engine for all (single- and double-pair) applications. Minimize alterations to existing code in use by Carrier Match at the Volpe Center as much as possible. Any unavoidable alterations should be thoroughly tested before replacing the operational prototype.

2) The match engine shall declare identical results for all applications (even if they have different criteria). If required, alter the match engine results after processing completes. Use small, application-specific post-processing scripts, which will modify values in the database’s results tables before output is generated from those tables.

3) Use the same executable for all double name/address-pair applications. Provide invocation switches for customizing run-time processing.

4) Code an object-oriented class module in Perl containing the full complement of attributes and methods needed by all applications. Let each application have its own main script module that initializes the class and invokes methods appropriate to its needs.

5) Code SQL scripts in an application-independent fashion.

a) Make use of nested SQL scripts, script input parameters, and defined constants in SQL*Plus to make the scripts data-driven. Standardize conventions for calling highest-level and nested scripts, for defining constants, and for setting and restoring SQL*Plus environment settings.

b) Each output report type shall be defined by its format – 1000-byte or details reports, for example. Code each report type into a single “library” script. Each library script will specify a set of SQL*Plus constants which must be defined by the calling script which will serve to customize the script’s output. These constants may be as simple as numeric or character values for use in a select clause, or as sophisticated as a column or table name, or even a full SQL statement clause.

c) Application-dependent scripts will generate output reports by calling library scripts. Each output report is merely a library script invocation with uniquely defined library-script constants. Application-dependent scripts will typically call multiple library scripts and/or call the same library script multiple times, based on the application’s requirements.

d) Redesign the database results tables to accommodate the above design goals.

Software Design Solution for the Double Name/Address Pair Search Problem

As mentioned above, having to perform four database searches (the cross product of two name/address pairs) threatened to impact the search and match engine’s speed in returning query results. Each “database search” is composed of up to six SQL queries on an 800,000-carrier database. Our solution for avoiding searching the database with the two recombined name and address pairs is based on two facts about the match engine. First, when it calls Matchware to rank a candidate, it also gets the DOT, ICC, name, and address component contributions to its overall weight at the same time. Each overall score is the simple sum of the four composite scores. Second, the match engine will never discard a candidate whose name or address weight is above a certain predefined threshold.

Searching the database with the two original name/address pairs results in two results lists, each containing the best candidates for each DOT number found. All that recombined searches (3rd and 4th) could hope to accomplish would be to find a better name and address weight combination for those same DOT numbers (since we never discard candidates with decent name or address weights). Since we know that we already have the best name and address weights for each DOT number (albeit perhaps not in the same results list), by simply recombining candidate names from one list with candidate addresses from the other list, we might be able to improve the name/address combination for that DOT. The query result can be declared by merging the two original results lists with the new candidate recombination list.

The candidates in the recombination list could change the results from that which the two searches alone might have obtained. For example, a query that would have been declared a potential match based on the results of the first two searches could be promoted to a definite match if a good enough candidate pair was found in the recombination list. On the other hand, the third list could turn a definite match result into a potential match result by contributing another definite match candidate where one already existed in the first two lists, resulting in conflicting definite candidates (which is declared as a potential match). However, this recombination strategy will never create a no-match outcome where a potential or definite match outcome existed before the recombination.

This solution requires migrating the heuristics application functions from one C++ class to another. Since that impacts code in the operational prototype at the Volpe Center, care must be taken to test it against the existing executable until we are satisfied that the results are at least as good.

Conclusion

The Matchware Search Algorithm adaptation, currently in system test, represents a major enhancement to the operational prototype in use at the Volpe Center in Cambridge, Massachusetts. A direct benefit of this exercise, the adaptation of prototype software to multiple new applications, was a clear demonstration of how the application of object-oriented principles could result in high code re-use and low code divergence, particularly when compared with the prototype from which it was derived. The strategy of creating common, non-divergent code for all single- and double-name/address-pair queries makes upkeep, maintenance, and potential new application development manageable, as well as guaranteeing correctness and consistency of results.

P. A. Frank

P. R. Karnik

PAF/PRK/aes

Distribution:

KS
Fournier

PA
Frank

PR
Karnik

JR
Latimer

AA
Mick

PD
North

EM
Roane

MH
Robinson

This Page Intentionally Blank

Appendix J. Evaluation of Integrity Real Time for C

This Page Intentionally Blank

Introduction

MatchWare™ is a commercial software product developed by MatchWare Technologies Inc. that is used in several software applications besides New MCMIS where FMCSA has required carrier identification capabilities (e.g., SAFETYNET 2000 and Legacy MCMIS) since 1996. The capabilities of MatchWare were incorporated into the software product Integrity after Vality Technologies Inc acquired MatchWare in July 1999.

In 2001, Vality Technologies Inc informed JHU/APL that they would discontinue support for MatchWare software, and that MatchWare users could upgrade to Integrity , the replacement product , for a savings of nearly $150,000.00 off the full product price. Based on this information, JHU/APL advised the FMCSA to migrate all MatchWare-based applications to Integrity. Without this migration, all MatchWare applications for the FMCSA would be dependant on an obsolete and unsupported version of the MatchWare software. This would be particularly risky for the New MCMIS system, which uses the capabilities of MatchWare as an integral component for several applications.

During discussions with Vality Technologies Inc, JHU/APL negotiated an arrangement by which a copy of the Integrity software would be made available to the New MCMIS team for evaluation prior to the FMCSA purchasing of the software. This appendix provides details of the evaluation that was performed to ensure full compatibility between components of the original MatchWare and the new Integrity products used in the MatchWare applications for New MCMIS.

J.1 The Evaluation Criteria:

While the Integrity software that replaces MatchWare has many components and features, this evaluation was limited to the component which replaced the MatchWare Callable Libraries for C – Integrity Real Time for C. The goal of the evaluation was to ensure that all MatchWare applications developed for the FMCSA would perform in the same manner and produce the same results when using Integrity software instead of MatchWare. Vality Technologies Inc. provided a copy of the full Integrity software suite to the National Transportation Volpe Center and the Integrity Real Time for C component from that suite was provided to JHU/APL to conduct this evaluation.

In order to evaluate Integrity Real Time for C, JHU/APL selected the following criteria to compare it with the MatchWare Callable Libraries:

· MatchWare Environment: Confirm whether all configuration files and function calls used by MatchWare applications are fully compatible with Integrity Real Time for C without requiring any modifications to current applications. The plan used was to attempt to build MatchWare applications by using the Real Time for C libraries instead of the MatchWare callable Libraries.

· Results from MatchWare: Confirm that all output (standardized keys) and results (scores) from Integrity Real Time for C are identical to the output and results from the MatchWare Callable Libraries.

· Performance of Applications: Confirm that all MatchWare applications perform with identical or better accuracy and speed by using Integrity Real Time for C when compared to the MatchWare Callable Libraries. The best way to evaluate this was to compare the results from the new Integrity application with those from the original MatchWare application.

J.2 The Evaluation

· The MatchWare Environment: The instructions provided with the Integrity Real Time for C software directed the use of the library MT.LIB from the software distribution CD. Attempting to use MT.LIB from the Integrity CD to build MatchWare applications resulted in a large number of “multiple external definition messages” for standard C/C++ function calls. These were also observed while using the MT.LIB from the MatchWare 4.0 software distribution. To eliminate this problem, we decided to try using two files named RealTimeC.lib and RealTimeC.dll in the Integrity software distribution that appeared to be the equivalent to the MatchWare 4.1 “lib” and “dll” files.

We were successful in building MatchWare applications using the Integrity RealTimeC.lib without any changes to the code other than replacing the C “Header” files. When we ran the newly built applications, we received warning messages related to “user classification override files” from the Integrity software. Based on the advise of engineers from Vality Technologies Inc. we created dummy “.ucl” files to suppress the warning messages. This allowed us to create an Integrity environment that was fully compatible with MatchWare for all applications.

· Results from MatchWare: In order to confirm that standardized keys and scores from applications built with Integrity Real Time for C were identical to the keys and scores generated by current MatchWare applications, we built a copy of the MatchWare Services API Reference Tables using the new Integrity -based applications.

The Match Services API Reference Tables contain standardized MatchWare keys and score for over 750,000 carriers from the MCMIS database. Comparing records from the new reference tables with those in the existing reference tables showed no differences. This provided a comprehensive method of comparing the keys and scores generated by Integrity-based applications with those generated by MatchWare-based applications.

· Performance of Applications: To confirm that all application built with Integrity Real Time for C perform with the same or better accuracy and speed as current MatchWare applications, we performed several tests.

· First, we ran the Daily Crash and Inspection report data through the new Integrity applications and compared the results and performance times with the regularly scheduled Crash and Inspection report process for a period of two weeks, starting from December 6, 2001 through December 19, 2001. This comparison, conducted under normal operational conditions, resulted in no differences in results between the new (Integrity) and current (MatchWare) versions of the applications for processing data containing one name and address field.

· Second, in order to confirm that the new versions of the applications would process data containing two name and address fields correctly, we ran the OP1 – MCS 150 process for seven weeks, from November 7, 2002 through December 17, 2002 through the new application. There were no observed differences in results or performance times between the new Integrity application the current MatchWare application.

J.3 Conclusions

Based on the successful completion of these tests, JHU/APL was able to conclude that the new product Integrity is compatible with the existing MatchWare software under identical configuration and operating environments. As a result, JHU/APL recommends that the FMCSA should transition the JHU/APL developed Carrier Search and Match software from MatchWare Callable Libraries to Integrity Real Time for C.

This Page Intentionally Blank

Appendix K. References

This Page Intentionally Blank

[1]
Integrity Data Re-engineering Environment, INTEGRITY Real Time: Technical Reference Manual.

[2]
Integrity Data Re-engineering Environment, INTEGRITY Real Time: Application Builder’s Guide for C.

[3]
Jaro, M.A., “Advances in Record Linkage Methodology as Applied to Matching the 1985 Census of Tampa, Florida,” Journal of the American Statistical Association, 1989, pp. 414-420.

[4]
MatchWare Technologies Inc., MatchWare Callable Libraries Version 4.1, Users Manual.

[5]
Knuth, Donald E., “The Art of Computer Programming,” Sorting and Searching, Vol. 3, 1973.
[6]
National Institute of Standards and Technology. Dictionary of Algorithms and Data Structures, http://www.nist.gov/dads.

This Page Intentionally Blank

� EMBED Visio.Drawing.6 ���

� EMBED Visio.Drawing.6 ���

� EMBED Visio.Drawing.6 ���

� EMBED Visio.Drawing.6 ���

� EMBED Visio.Drawing.6 ���

� EMBED Visio.Drawing.6 ���

PAGE

[image: image23.wmf]PIPES

Match Handler

PL/SQL

NEW MCMIS

APPLICATIONS

MatchWare

Services

API

Match Handler

Program

MatchWare Callable

Library Functions

Integrity Reatime for

C

Configuration Files

(Dictionary,

Standardization,

Classification,

Pattern,

Rule)

Net * 8

ORACLE DATABASE

REFERENCE

TABLES

[image: image24.wmf]Query:

Name,

Address,

DOT, ICC

1.0

Process Query

Query

Declaration;

Detail List

Context

[image: image25.wmf]1 Process Query

1.1

Carrier Query:

Name, Address,

DOT, ICC

1.2

Standardize Query;

Analyze Query for

Searches to perform.

1.3

More search

candidates?

1.4

Is this search

perfomed for

this query?

1.5

Search and Match

1.6

Matchware

definite found?

No

No

Yes

1.7

Merge all search

results

Yes

1.8

Declare Query

Result

Yes

No

1.9

Query

Declaration;

Results list

[image: image26.wmf]1.5.6: Adjust Name Weights

1.5.6.1

Name Weight > 13?

1.5.6.2

words in query

different than # words

in candidate?

1.5.6.3

#cand words < #query

words?

No

Yes

No

Yes

1.5.6.5

Reduce name

weight according

to number of cand

words.

1.5.6.4

Cand words < 4?

Yes

1.5.6.6

Query words < 3?

Yes

No

1.5.6.7

Reduce name

weight according

to number of query

words

Yes

1.5.6.8

Adjust combined

weight

No

No

for each candidate

[image: image27.wmf]1.5.9 Apply Heuristics

1.5.9.2

DOT or ICC

cand?

1.5.9.1

while more

candidates to

process

1.5.9.3.2.3

Set DOT/ICC

Heuristic def found

flag

1.5.9.3.1.4

DOT/ICC Heuristic

def found

previously?

No

Yes

No

1.5.9.2.2

Name/Address

weights high

enough?

1.5.9.2.1

Set as promotable

Yes

1.5.9.3.2

Promotable?

1.5.9.3.2.2

DOT/ICC cand

and active and

definite?

Yes

1.5.9.3.2.1

Compute rule-

based weight

Yes

No

1.5.9.3.1

Promotable?

1.5.9.3.1.1

Demote

Matchware definite

to high potential.

No

1.5.9.3.1.2

Active?

Yes

Yes

No

Yes

1.5.9.3.1.3

Set Matchware

definite found flag

1.5.9.4

Loop end:

Re-sort list

No

1.5.9.3

Matchware

definite?

Yes

No

_1085410400.vsd

_1101879520.vsd

_1085405017.vsd

_1085405074.vsd

_1085410367.vsd

_1085404948.vsd

