[image: image1.png]
Version 1

July 2002

Prepared for

[image: image12.bmp]
US Department of Transportation
Federal Highway Administration

400 Seventh Street, SW

Washington, DC 20590

Prepared by

[image: image2.wmf]
The Johns Hopkins University

Applied Physics Laboratory

11100 Johns Hopkins Road

Laurel, MD 20723-6099

Document Information

Document Title:
CVIEW Version 3.3 Configuration Definition Document Release 1

Issued by:
C. D. Bethea & E. C. King

Issue Date:
July 2002

If there are any comments or questions about this document, please address them to:

The Johns Hopkins University Applied Physics Laboratory

11100 Johns Hopkins Road

Laurel, Maryland 20723-6099

Attention: Carolyn Bethea (Building 24-E240)

Phone:

(240) 228-0151

FAX:

(240) 228-6149

E-Mail:
Carolyn.Bethea @jhuapl.edu

CVIEW Web Page: http://www.jhuapl.edu/cvisn/
then click on “CVIEW” under the “CVISN Projects at APL” heading.

Acknowledgments

The authors would like to thank Robert Goldfarb and Grace McGonnigal, for their assistance with this information.

TABLE OF CONTENTS

31.
Introduction

2.
Version Identification
3
3.
Acronyms
4
4.
CVIEW Registry Settings
5
4.1.
The CVIEW Root Registry Key
6
4.2.
General Configuration Settings
6
4.3.
Database Settings
9
4.4.
Directory Settings
10
4.5.
EDI Settings
13
4.6.
Input Mailbox Settings
17
4.7.
SMTP Mailbox Settings
19
4.8.
Error Mailbox Settings
20
4.9.
Legacy System Interface Directory Thread Settings
22
4.10.
Subscription Mailbox Settings
23
4.11.
RPC Server Settings
26
5.
SENDLIST Registry Settings
27
5.1.
General Configuration Settings
27
5.2.
Database Settings
27
5.3.
Directory Settings
28
5.4.
EDI Settings
28
5.5.
SMTP Mailbox Settings
33
5.6.
Error Mailbox Settings
33
6.
Event Log Message Files
34
7.
Server Data Directory Structures
34
7.1.
IOT Threads
34
7.2.
Back End Threads
34
7.3.
Temporary Files
35
7.4.
Data Queue Files
35
8.
Log Files and Event Log Entries
35
8.1.
Subscription threads
35
8.2.
IOT
36
9.
ASPEN 2.1 Connectivity Through CVIEW
36
10.
LSI Update Sequencing
37
11.
Service Startup
37
12.
Service Shutdown
41

1. Introduction

This document describes configuration settings, system data structures, and system startup and shutdown sequences associated with CVIEW Version 3.

2. Version Identification

Executables and other binary files associated with this release are identified by a file version of 3.

3. Acronyms

COM

Component Object Model

CVIS

Obsolete - now called PRISM

CVIEW

Commercial Vehicle Information Exchange Window

DB

Database

DBASE

III/IV A database product

DLL

Dynamic Linked Library

DOT

Department of Transportation

EDI

Electronic Data Interchange

FTP

File Transfer Protocol

IMH

Input Message Handler

IOT

Input Output Translator

IRP

International Registration Program

ISS

Inspection Selection Score

LSI

Legacy System Interface

MBX

Mailbox

MCMIS

Motor Carrier Management Information System

POP3

Post Office Protocol 3

RPC

Remote Procedure Call

SAFER

SAFETY and Fitness Electronic Records

SDB

SAFER Database

SDM

SAFER Database Management

SMTP

Simple Mail Transfer Protocol

4. CVIEW Registry Settings

Manipulating the data of various key-value pairs in the computer’s system registry configures the CVIEW software. There are two ways to manipulate these data:

· Editing the registry directly by using a tool such as the Registry Editor. This method provides access to all configuration settings.

· Using the Service Configuration Tool application, which is provided on the CVIEW CD‑ROM (and which you should install, if you haven’t already). This method provides access to the more common CVIEW configuration settings.

Both methods are described below.

The following terms are used in the descriptions below:

“Registry key” or “key”:

A registry ‘folder’, if you will, that can contain one or more registry values.

“Registry value” or “value”:

Registry values are used to hold the actual data that is ultimately manipulated. A single registry value can only contain a single data element. They are always found within a registry key, and always hold some kind of data (even if the data is an empty or null string). There are three types of registry values: string values, binary values, and DWORD values. CVIEW uses string values exclusively. (Registry values are very similar to “variables” used in programming languages.)

“Value data” or “data”:

A value data element describes the actual information found in a registry value. CVIEW only uses string values; consequently all value data elements are strings. (A value data element is very similar to the evaluated value of a “variable” used in a programming language.)

The following illustration shows a portion of the system registry as viewed in the Registry Editor program. All of the CVIEW related registry keys are shown in the left-hand pane (they appear as folders). Note that the Database folder is open, indicating that the value-data pairs shown in the right-hand pane are all found in the Database key. An example of a registry value in the illustration is “Check_DB_Interval.” An example of a value data element is “30.”

[image: image3.png]
4.1. The CVIEW Root Registry Key
All of the registry keys pertaining to CVIEW configuration settings are sub-keys of the following CVIEW “root” key:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\DCVIEW3BINCVIEW3\CVIEW3

In the descriptions below, the above root key is shortened to: <CVIEWRootKey>
4.2. General Configuration Settings

Registry Key: <CVIEWRootKey>\CONFIG
All of the value-data pairs related to general configuration settings are stored in the CONFIG registry key. A description of the values and their corresponding data follows.

EDI_MAPPER_REQUIRED
In certain situations EDI is not used to exchange data with other CVIEW installations. Normally EDI is required and this data element should be “Y” (Yes). If EDI is not required, this data element should be set to “N” (No).

Example data:
Y

Federal Enforcement Group
This value stores the name of the NT global group into which users must belong in order to be identified as Federal Law Enforcement officers. If a user is a member of this group, they are permitted to request inspection report data. It is not normally necessary to modify the data stored in this value.

· This value must be present.

Example data:
SAFERFedEnf
IOT_Threads
This value specifies the MAXIMUM number of simultaneous IOT incoming message translation threads that may be active at any one time. An IOT thread is created in response to receipt of a single message by an input (or subscription) thread and is deleted as soon as it finishes processing that message. The number should be high enough so that short bursts of messages will be efficiently processed, but not so high that an unusually large number of thread maybe active simultaneously which may overload the system. The data placed into this value must be numeric, and be greater than zero.

· If this value is missing or the data specified is invalid, the service will not start.

Example data:
10

IOTLog

This value is used to enable IOT logging which can provide details of incoming and outgoing message processing. Each IOT thread records information into its own log file in a separate directory (see the “Log Files and Event Log Entries” section). IOT Logging is normally used for troubleshooting provided that logging the results of each IOT Translation causes some performance degradation. The data placed into this value must be numeric, and be a zero or a one.

· If this value is missing, the service will assume logging is NOT required.

· 1 indicates logging is desired; 0 indicates no logging.

Example data:
0

IS_CVIEW_NODE
For CVIEW systems, the data element placed into this value must be “Y”.

· If this value is missing or the data specified is invalid, the service is assumed to be a CVIEW.

Example data:
Y

Non-Federal Enforcement Group
This value stores the name of the NT global group into which users must belong in order to be identified as Non-Federal (i.e. State) Law Enforcement officers. If a user is a member of this group, they are also permitted to request inspection report data. Normally it is not necessary to modify the data stored in this value.

· This value must be present.

Example data:
SAFERStateEnf
OIG_Logging
This value is used to enable logging of requests for Inspection data. The data placed into this value must be numeric, and be a zero or a one.

· 1 indicates logging is desired; 0 indicates no logging.

Example data:
0

Request_Que_Size
This value specifies the size (in Mbytes) of the file used to back up the Request Data queue. Each request requires about 10,000 Bytes. Therefore, about 100 requests can be held in the Request Queue for each Mbyte of size before the queue is filled.
 (The Request Queue file resides in the directory specified by the “Queue_Path” registry value in the Directories key.) The data placed into this value must be numeric, and be greater than zero.

· If this value is missing or the data specified is invalid, the service will not start.

Example data:
10

SAFER Workers

This value specifies the number of back end threads that are created. These threads perform data base access, MCMIS updates, and generate responses to requests and immediate subscriptions. The data placed into this value must be numeric, and be greater than zero.

· If this value is missing or the data specified is invalid, the service will not start.

Example data:
5

Start_Time
This value is used to store the date and time the program started. Do not attempt to modify the data in this value – the CVIEW software manipulates it.

Stop_Time
This value is used to store the date and time the program stopped (only if stopped via the Services control panel applet). Do not attempt to modify the data in this value – the CVIEW software manipulates it.

System Data Interval

This value is used during program development only. The data should not be changed from its default (3).

Two additional values, Mailbox INI File and Update_Que_Size can be found in the CONFIG key; they are not used however they must be present.

4.3. Database Settings

Registry Key: <CVIEWRootKey>\Database
Service Configuration Tool Page: Database

Note:
When the Service Configuration Tool is installed it will also be activated and this affords the user the immediate opportunity to make important site-specific configuration changes at install-time. However, the Database page is not available when the tool runs during installation. It is available only when the tool is run using the Windows Start button.

[image: image4.png]
All of the value-data pairs related to database configuration settings are stored in the Database registry key. They can also be accessed on the Database page of the Service Configuration Tool. A description of the values and their corresponding data follows.

Check_DB_Interval (“Retry Interval” in the Configuration Tool)

This value contains the number of seconds between attempts to re-connect to the database during Service startup.

Example data:
30

Check_DB_TTLWait (“Time-Out Period” in the Configuration Tool)

This value contains the total number of minutes the CVIEW Service will wait before determining that the database is unavailable. If it declares the database is unavailable an error is logged and the service will terminate.

Example data:
60

Database Name (“Host Name (alias)” in the Configuration Tool)
This value stores the host name (alias) used by the Back End worker threads to connect to the services CVIEW database.

· If this value is missing or the data specified is an empty (null) string, the service will not start.

Example data:
MyAlias

Database Password (“Password” in the Configuration Tool)
This value stores the login password used by the Back End worker threads to connect to the server’s local CVIEW database.

· If this value is missing or the data specified is an empty (null) string, the service will not start.

Example data:
MyPassword

Database Username (“User Name (schema)” in the Configuration Tool)
This value stores the login user ID used by the Back End worker threads to connect to the server’s local CVIEW database.

· If this value is missing or the data specified is an empty (null) string, the service will not start.

Example data:
MyUserID

Here is what happens when the service starts up:

First the program checks to see if the database specified by the Database Name, Database User, and Database Password values is ready. If not, it waits the number of seconds specified by the Check_DB_Interval value and tries again. If the database continues to be unavailable for a total number of minutes specified by the Check_DB_TTLWait value, the program logs an error and exits.

Five additional values shown below can be found in the Database key; They are not used, however they must be present:

Oracle_Host_Name

ORACLE_LOGIN_DOMAIN

Oracle_Server_Login_PWD

Oracle_Server_Login_User

Oracle_Service_Name

4.4. Directory Settings

Registry Key: <CVIEWRootKey>\Directories
Service Configuration Tool Page: Directories

Note:
When the Service Configuration Tool is installed it will afford the user the immediate opportunity to make important site-specific configuration changes. However, the Directories page is not available when the tool runs during installation. It will be available when the tool is run via the Windows Start button.

[image: image5.png]
All of the value-data pairs related to directory configuration settings are stored in the Directories registry key. They can also be accessed on the Directories page of the Service Configuration Tool. A description of the values and their corresponding data follows.

CVIS_File_Directory (“CVIS Files” in the Configuration Tool)
This value is not relevant to CVIEW but must be present. The default value should not be modified.

· If this value is missing or if the path specified does not exist, the service will not start.

Example data:
D:\CVIEW3\LSIFiles

Error_Inspection_Report_Location (“Problem Reports” in the Configuration Tool)
Inspection report files received from Aspen that cannot be successfully processed are stored in the directory pointed to by this value.

· If this value is missing or if the path specified does not exist, inspection reports that cannot be processed will be stored in the system’s “temp” directory.

Example data:
D:\CVIEW3\ErrorInspections

Inspection_Report_Location (“Reports” in the Configuration Tool)
This value contains the absolute path to the root directory of the tree in which incoming Aspen inspection reports will be stored.

· If this value is missing or if the path specified does not exist, the service will not start.

· If possible, the path should point to a large capacity drive since many inspection report files may be stored.

Example data:
D:\CVIEW3\Inspections

IOTRootDir (“IOT Threads” in the Configuration Tool)
This value contains the absolute path to the root of the directory tree in which the IOT threads will create their working directories (see Server Data Directory Structures section for discussion).

· If this value is missing or if the path specified does not exist, the service will not start.

· If possible, the path should point to a directory located on a high performance drive, since the IOT threads frequently access their working directories.

Example data:
D:\CVIEW3\Threads

Queue_Path (“Request Queue” in the Configuration Tool)
The Request data queue is configured so that it is continuously backed up to a disk file by the operating system. Also, when the service is shutdown, any transactions remaining in the queue are automatically saved to disk and then restored the next time the service is started. The Queue_Path value specifies the absolute path to the directory containing the Request queue file. The disk drive associated with the path must contain sufficient space for the Request Queue file. (The size of the queue file is specified by the “Request_Que_Size” registry value in the CONFIG key.)

· If this value is missing or if the path specified does not exist, the service will not start.

Example data:
D:\CVIEW3\Queues

SavedInputFilesDir (“Saved Messages” in the Configuration Tool)
Normally, messages received by CVIEW via the input, subscription, or Directory Monitor threads are deleted after data is extracted from them. Instead of deleting them, a directory can be specified into which these input messages will be stored for later review (or for other purposes). This capability should only be used for problem diagnosis and debugging. All input messages (not including e‑mail attachments) are moved into the directory specified by this value. All of the messages saved in this directory must be managed and deleted manually. Otherwise there is a risk of the disk becoming full.

· If this value is missing or if the data is an empty (null) string, the input messages will not be saved.

· If this value contains a string, it must specify an existing path or the service will not start.

Example data:
D:\CVIEW3\SavedInputFilesDir

4.5. EDI Settings

Registry Key: <CVIEWRootKey>\EDI
All of the value-data pairs related to Electronic Data Interchange (EDI) configuration settings are stored in the EDI registry key. A description of the values and their corresponding data follows.

EDITransLog
This value is used to enable verbose logging of the EDI translator. It is used only for troubleshooting of incoming or outgoing EDI mapping problems. Its use will cause a major degradation in the translation of these EDI messages. Each IOT thread generates its own EDI translator log file in a separate directory (see the “IOT” paragraph in the “Log Files and Event Log Entries” section). Enabling EDI translator logging will result in the generation of very large log files. If enabled at least 5GB of free space is required or EDI translation operations will fail. The data placed into this value must be a zero or a one.

· If this value is missing, the service will assume EDI translator logging is NOT required.

· 1 indicates logging is desired; 0 indicates no logging.

Example data:
0

HostFirstName
This value contains the first name used to identify the server within the EDI messages that are generated by the service. It is defined as a character string up to 25 characters in length. Represents the 2 state postal code.

Example data:
MD

HostLastName
This value contains the last name used to identify the server within the EDI messages that are generated by the service. It is defined as a character string up to 35 characters in length.

Example data:
CVIEW

HostMName
This value contains the middle name used to identify the server within the EDI messages that are generated by the service. It is defined as a character string up to 25 characters in length.

Example data:
AT

HostOrgName
This value contains the name used to identify the organization operating the server within the EDI messages that are generated by the service. It is defined as a character string up to 20 characters in length.

Example data:
MVA

InboundMap
This value contains the name (including extension) of the Inbound EDI map file. Note that this value does not include any path information (the path is specified in the InMapDir value). For this version of CVIEW, the data element placed into this value must be “X_Inboun.mmc”.
· If this value is missing or if the file specified does not exist (in the folder specified by the InMapDir value), the service will not start.

Example data:
X_Inboun.mmc

InMapDir
This value contains the absolute path to the directory containing the Inbound EDI map file.

· If this value is missing or if the path specified does not exist, the service will not start.

Example data:
D:\CVIEW3\Maps

IR TYPE
The data in this value indicates the type of inspection reports that will be stored on the server. Legal value data are “INTRA” (Intrastate), “INTER” (Interstate), “NONE”, or “BOTH.” The data “NONE” is placed into this value when the service is installed.

· If this value is missing or the data specified is an empty (null) string, the inspection reports won’t be stored.

Example data:
NONE

Map Retry
The maximum number of retries that will occur if a map execution error is detected is stored in this value. During normal operations, inbound or outbound map execution may fail due to infrequent system timing conditions. The IOT software automatically attempts to re-execute the map up to the number of additional attempts specified by the data in this registry value.

· If this value is missing, a default of 1 retry will be used.

Example data:
3

MY_TP_ID (“Trading Partner ID” in the Configuration Tool, on the General page)
Each server has a unique Trading Partner Identifier so that other servers receiving its EDI messages can identify the sender for auditing, tracking, or other purposes. This value contains the server’s assigned Trading Partner Identifier. The data placed into this value is an alphanumeric string of up to 10 characters.

· If this value is missing or the data specified is an empty (null) string, the service will not start.

· The string used is usually “CVIEW” immediately followed by the two-letter state postal code.

Example data:
CVIEWMD

MY_TPID_QUAL
This value specifies the “meaning” of the value of the Trading Partner Identifier specified by the MY_TP_ID value. It indicates whether the Trading Partner ID is a telephone number, social security number, CVIEW user name, etc. Since MY_TP_ID is usually a CVIEW user name, the string is usually "ZZ".

· If this value is missing or the data specified is an empty (null) string, the service will exhibit strange behavior.

Example data:
ZZ

NEXT EDI CONTROL NO
This value specifies the next Control Number that will be used in EDI messages. It is initialized to 100 when the CVIEW service is installed. It is incremented by the Service each time an EDI message is generated. When the CVIEW service is started, it reads the value of NEXT EDI CONTROL NO and EDI messages are generated with control numbers beginning at that value. When the CVIEW service is stopped, it saves its current internal value of EDI CONTROL NO to the registry for the next run of CVIEW. This value should only be changed following installation, if it is necessary to reset the EDI Control Number. (See your EDI Administrator).

Example data:
100

NextTransaction
All messages generated by the service contain a unique Reference Identifier for auditing and tracking purposes. The Reference ID is composed of a fixed alphanumeric string (of up to 20 characters) followed by a sequence number (of up to 10 characters). The sequence number is incremented by the service each time a message is generated. The value of the sequence number is initialized from the NextTransaction value when the service starts. When the service is stopped, the sequence number from the last message generated is incremented and written back to the registry for the next startup. The data placed into this value must be numeric, and be greater than zero.

· It is not normally necessary to make any changes to the data in this value.

· If this value is missing or the data specified is invalid, the service will not start.

Example data:
1

Outbound997Map
This value contains the name (including extension) of the Outbound 997 map file. Note that this value does not include any path information (the path is specified in the OutMapDir value). This map file is required in order for the service to generate EDI Functional Acknowledgement (997) transactions in response to incoming EDI messages that contain EDI syntax errors. For this version of CVIEW, we recommend that the data element placed into this value be a null string (“”).

· If this value is missing or if the data is an empty (null) string, functional acknowledgements will not be generated.

Example data:
X_API_FA.mmc
OutboundMap
This value contains the name (including extension) of the Outbound EDI map file. Note that this value does not include any path information (the path is specified in the OutMapDir value). For this version of CVIEW, the data element placed into this value must be “X_OUTBOU.mmc”.
· If this value is missing or if the file specified does not exist (in the folder specified by the OutMapDir value), the service will not start.

Example data:
X_OUTBOU.mmc

OutMapDir
This value contains the absolute path to the directory containing the Outbound EDI map file.

· If this value is missing or if the path specified does not exist, the service will not start.

Example data:
D:\CVIEW3\Maps

TransIDPrefix
All messages generated by the service contain a unique Reference Identifier for auditing and tracking purposes. The Reference ID is composed of a fixed alphanumeric string (of up to 20 characters) followed by a sequence number (of up to 10 characters). The sequence number is incremented by the service each time a message is generated. The fixed portion of the Reference ID is specified by this value.

· The data stored in this value should be the same as the data in the MY_TP_ID value. (If you use the Service Configuration Tool application, it will automatically copy the data in the MY_TP_ID value into this value.)

· If this value is missing or the data specified is an empty (null) string, the service will not start.

· The string used is usually “CVIEW” immediately followed by the two-letter state postal code.

Example data:
CVIEWMD

WANT 824
The existence of this value indicates that 824 reports of the designated type will be sent. Legal value data that define the type are “C” for carrier, “V” for vehicle, or “CV” for both. The data “C” is placed into this value when the service is installed.

· If this value is missing or the data specified is an empty (null) string, the 824’s won’t be produced.

Example data:
C

4.6. Input Mailbox Settings

Registry Key: <CVIEWRootKey>\Input_MBX
Service Configuration Tool Page: In-Boxes

[image: image6.png]
All of the value-data pairs related to the configuration of Input Mailboxes are stored in the Input_MBX registry key. The values stored in this key are a little bit different from those described previously in that it is possible to define more than one input mailbox. You can accomplish this by creating one or more additional sets of four INPUT_MBX values (described below), and by putting the appropriate numeric data into the NUM_INPUTMBX value.

INPUT_MBX_NAMEn (“Mailbox Name” in the Configuration Tool)
This value contains the POP3 mailbox account name. (Replace the small letter “n” with an appropriate integer value greater than or equal to one.)

· If this value is missing or the specified account name is invalid, the service will not start.

Example value:
INPUT_MBX_NAME1

Example data:
CVIEWMDIN

INPUT_MBX_POLLRATEn (“Mailbox Poll Rate” in the Configuration Tool)
The number stored in this value is the frequency at which each Input thread polls the respective input mailbox looking for mail. (Replace the small letter “n” with an appropriate integer value greater than or equal to one.) This interval is specified in milliseconds. The data placed into this value must be numeric, and be greater than zero.

· If this value is missing or the data specified is invalid, the service will not start.

Example value:
INPUT_MBX_POLLRATE1

Example data:
900

INPUT_MBX_PWORDn (“Mailbox Password” in the Configuration Tool)
This value contains the password for the POP3 mailbox account. (Replace the small letter “n” with an appropriate integer value greater than or equal to one.)

· If this value is missing or the specified password is incorrect for the associated mailbox, the service will not start.

Example value:
INPUT_MBX_PWORD1

Example data:
MyPassword

INPUT_MBX_SERVERn (“E‑Mail Server” in the Configuration Tool)
This value specifies the name of the POP3 server to which the thread will connect to read its input mailbox. (Replace the small letter “n” with an appropriate integer value greater than or equal to one.)

· If this value is missing or the specified POP3 server doesn’t exist, the service will not start.

Example value:
INPUT_MBX_SERVER1

Example data:
email.server.state.gov

The following additional example illustrates possible registry settings for two input mailboxes:

NUM_INPUTMBX:

2

INPUT_MBX_NAME1:

CVIEWMDIN

INPUT_MBX_POLLRATE1:
900

INPUT_MBX_PWORD1:

MyPassword

INPUT_MBX_SERVER1:

email.server.state.gov

INPUT_MBX_NAME2:

CVIEWMDIN2

INPUT_MBX_POLLRATE2:
900

INPUT_MBX_PWORD2:

MyPassword2

INPUT_MBX_SERVER2:

email.server2.state.gov

If you use the Service Configuration Tool to create another input mailbox, all you need do is click on the Add button. Doing so will create another “Select” in-box radio button. Fill in the appropriate information. To delete an input mailbox using the Configuration Tool, select it first then click on the Delete button. The Service Configuration Tool allows you to have up to five input mailboxes.

MAX_POP_MSGS (“Maximum Inbound Messages per Thread” in the Configuration Tool)
The data in this value is the maximum number of e‑mail messages read by the Service’s Input or Subscription threads before the thread disconnects
 from the POP e‑mail Server. In order to maintain reliable interaction with the POP E‑mail Service, the CVIEW Service will read up to the number of messages specified by the data in this value and then disconnect from the POP E‑mail Service. The thread will then immediately reconnect to the POP Service and; if there are any remaining messages to be read, will read the next group. This cycle will repeat until there are no messages to be read. The data placed into this value must be numeric, and be greater than zero.

· If this value is missing or the data specified is invalid, the service will use a preprogrammed default value.

Example data:
100

NUM_INPUTMBX
This value contains the number of Input Mailbox threads to be created by the CVIEW service at startup. (Note that the Configuration Tool does not present this value for direct modification.) The data placed into this value must be numeric, and be greater than zero.

· If this value is missing or the data specified is invalid, the service will not start.

· If the data in this value is 1, there must be one set of four INPUT_MBX values (described below). If the data in this value is greater than 1, there must be a corresponding quantity of four INPUT_MBX values. If there are fewer than the required sets of four INPUT_MBX values, the service will not start.

Example data:
1

4.7. SMTP Mailbox Settings

Registry Key: <CVIEWRootKey>\SMTP_MBX
Service Configuration Tool Page: General

[image: image7.png]
All of the value-data pairs related to normal outbound e‑mail are stored in the SMTP_MBX registry key. A description of the values and their corresponding data follows.

SMTP_MBX_NAME (“Normal Outbound E‑Mail, Return Address” in the Configuration Tool)
This value contains the e‑mail return address used by the service whenever it sends out normal (non-error) e‑mail. This value also establishes the mailbox where EDI 824 acknowledgements will be returned. The return address must consist of the fully qualified input mailbox name including the domain.

· If this value is missing or the data specified is an empty (null) string, the service will not start.

Example data:
CVIEWMDIN@<DomainName>

SMTP_MBX_SERVER (“Normal Outbound E‑Mail, E‑Mail Server” in the Configuration Tool)
This value specifies the name of the SMTP server to which the back-end threads will connect to send out normal (non-error) e‑mail. Examples of normal e‑mail are answers to queries, and subscription updates.

· If this value is missing or the data specified is an empty (null) string, the service will not start.

Example data:
email.server.state.gov

One additional value, SMTP_MBX_PWORD can be found in the SMTP_MBX key; it is not used, however it must be present.

4.8. Error Mailbox Settings

Registry Key: <CVIEWRootKey>\ERROR_MBX
Service Configuration Tool Page: General

[image: image8.png]
All of the value-data pairs related to error outbound e‑mail are stored in the ERROR_MBX registry key. A description of the values and their corresponding data follows.

ERROR_MBX_NAME (“Error Message Outbound E‑Mail, Return Address” in the Configuration Tool)
This value contains the e‑mail return address used by the service whenever it sends out error response e‑mail related to queries and immediate subscription updates.

· If this value is missing or the data specified is an empty (null) string, the service will not start.

Example data:
CVIEWMDOUT@<DomainName>

ERROR_MBX_SERVER (“Error Message Outbound E‑Mail, E‑Mail Server” in the Configuration Tool)
This value specifies the name of the SMTP server to which the back-end threads will connect to send out error response e‑mail related to queries and immediate subscription updates.

· If this value is missing or the data specified is an empty (null) string, the service will not start.

Example data:
email.server.state.gov

One additional value, ERROR_MBX_PWORD can be found in the ERROR_MBX key; it is not used, however it must be present

4.9. Legacy System Interface Directory Thread Settings

Registry Key: <CVIEWRootKey>\LSI
LSI data files are transmitted from the legacy system to one or more disk directories on the CVIEW server, so that they can be processed by the state developed Legacy System’s Interface (LSI) Component Object Model (COM) software Dynamically Linked Library (DLL). For each Legacy system interface, a directory is assigned to receive a “LSI kickoff” message file, which is also sent from the legacy system. The kickoff message contains information that enables the system to identify the LSI COM that is used to process the data files and also specifies the absolute path to the data files transmitted to the server from the Legacy system.

LSI Directory Input threads each monitor a single directory, looking for the presence of the kickoff message. When the message arrives, the associated LSI Directory thread sends the message to the service, which locates the appropriate LSI COM, passes the location of the data files specified in the message to the COM, and receives and stores snapshots from the COM.

It is possible to define more than one LSI directory to be monitored. You can accomplish this by creating one or more additional LSI_DIRPATH values (described below), and by putting the appropriate numeric data into the NUM_LSIDIRS value.

NUM_LSIDIRS
This setting specifies the number of active LSI directories to be monitored by the system (one LSI Directory thread is created for each Directory to be monitored). This setting must be a number whose value is greater than or equal to 0.

· If this value is missing or the data specified is invalid, no LSI Directory threads will be created.

· If the data in this value is 1, there must be one LSI_DIRPATH value (described below). If the data in this value is greater than 1, three must be a corresponding quantity of LSI_DIRPATH values.

Example data:
1

LSI_DIRPATHn
This value contains the absolute path (including the drive letter) of an LSI directory to be monitored. (Replace the small letter “n” with an appropriate integer value greater than or equal to one.)

· If this value is missing or if the path specified does not exist, the service will not start.

Example value:
LSI_DIRPATH1

Example data:

D:\CVIEW3\LSIMessage

LSI_INTERFACE_V3
Each version of CVIEW supports an interface by which LSI components pass Carrier or Vehicle snapshot data from legacy data files to the CVIEW service. This value identifies the LSI interface that the service supports and is entered in the registry when CVIEW is installed. Do not modify the data in this value or LSI processing will fail.
4.10. Subscription Mailbox Settings

Registry Key: <CVIEWRootKey>\SUBSCRIPTION_MBX
Service Configuration Tool Page: Subscription Mailboxes

[image: image9.png]
What is a subscription?

A subscription is a request created by a CVIEW Operator utilizing the OpCon program. A subscription facilitates the CVIEW service in providing one or more users (subscribers) with an explicit set of data using a specified format and delivery rate. The subscription is stored within the CVIEW database and when data associated with the defined subscription is modified, the subscribers’ mailbox is updated with the changes. CVIEW is a subscriber to SAFER and at a set interval will retrieve data from its CVIEW subscription mailbox on SAFER located at the Volpe Center. As well as being a subscriber to SAFER, CVIEW can have subscribers registered in its database who can also receive subscription data from it. Currently Carrier and Vehicle snapshot, and Inspection Report subscriptions are supported.

How does CVIEW retrieve its snapshot data?

In order for CVIEW to be able to retrieve Carrier and Vehicle subscriptions from Volpe, a user ID, password, and mailbox are created on the SAFER system. A SAFER system operator (technical support person) performs this function on behalf of a subscriber at Volpe. As previously mentioned, this is done via the OpCon application. By convention the CVIEW username and mailbox name are defined as CVIEW<st>, where “<st>” represents the 2 letter state postal code. CVIEW must then be configured with the same user ID, password, and mailbox name.

All of the value-data pairs related to the configuration of CVIEW’s subscription mailbox(s) are stored in the SUBSCRIPTION_MBX registry key. The values stored in this key are a little bit different in that it is possible to define more than one subscription mailbox. You can accomplish this by creating one or more additional sets of four SUB_MBX values (described below), and by putting the appropriate numeric data into the NUM_SUBMBX value.

SUB_MBX_INTERVALn (“Timer Interval” in the Configuration Tool)
This value specifies the interval at which CVIEW will check its subscription mailbox for e‑mail messages, and processes any messages it finds. (Replace the small letter “n” with an appropriate integer value greater than or equal to one.) After processing all the e‑mail in the mailbox, the thread will deactivate itself until the next processing interval.

The Subscription thread interprets the data in the value as either a “wait” period specified in minutes, or a daily activation time specified as HH:MM:SS (24 hour local time). If the data is interpreted as minutes, the thread will sleep for the specified interval following each period of processing all e‑mail in its input mailbox. If the data is interpreted as a time-of-day by the thread, the thread will activate itself at that time, process all e‑mail in its input mailbox, and then sleep until the same time on the following day. If the Timer Interval value represents a time-of-day and the service is started after that time, the thread will remain inactive until the next day at the specified time.

The largest value that may be specified as a wait period is 29,999 minutes (about 20 days). If any value larger than 29,999 is specified, it will be interpreted as a fixed, maximum value of 24.8 days.

Example value:
SUB_MBX_INTERVAL1

Example data:

30

(interval)
Example data:

12:30:00
(time-of-day)
SUB_MBX_NAMEn (“Mailbox Name” in the Configuration Tool)
This value contains the POP3 subscription mailbox account name. (Replace the small letter “n” with an appropriate integer value greater than or equal to one.)

Example value:
SUB_MBX_NAME1

Example data:

CVIEWMD

SUB_MBX_PWORDn (“Mailbox Password” in the Configuration Tool)
This value contains the password for the POP3 subscription mailbox account. (Replace the small letter “n” with an appropriate integer value greater than or equal to one.)

Example value:
SUB_MBX_PWORD1

Example data:

MySubPwd

SUB_MBX_SERVERn (“E‑Mail Server” in the Configuration Tool)
This value specifies the name of the POP3 server to which the thread will connect to read its subscription mailbox. (Replace the small letter “n” with an appropriate integer value greater than or equal to one.)

Example value:
SUB_MBX_SERVER1

Example data:

mail03.safersys.org

The following additional example illustrates possible registry settings for two subscription mailboxes:

NUM_SUBMBX:

2

SUB_MBX_INTERVAL1:

30

SUB_MBX_NAME1:

CVIEWMD

SUB_MBX_PWORD1:

MySubPwd

SUB_MBX_SERVER1:

mail03.safersys.org

SUB_MBX_INTERVAL2:

12:30:00

SUB_MBX_NAME2:

CVIEWMD2

SUB_MBX_PWORD2:

MySubPwd2

SUB_MBX_SERVER2:

mail03.safersys.org

If you use the Service Configuration Tool to create another subscription mailbox, all you need do is click on the Add button. Doing so will create another “Select” mailbox radio button. Fill in the appropriate information. To delete an input mailbox using the Configuration Tool, select it first then click on the Delete button. The Service Configuration Tool allows you to have up to five subscription mailboxes.

NUM_SUBMBX
This value contains the number of Subscription mailboxes read by the service at startup. (Note that the Configuration Tool does not present this value for direct modification.) Subscription threads are automatically activated at fixed intervals (every X minutes or once per day at a specified Greenwich Mean Time). The CVIEW service reads and processes messages in the associated mailbox, and then sleeps until the next processing time. The data placed into this value must be numeric, and be greater than or equal to zero.

· If this value is missing or the data specified is invalid, the service will not start. (Note that 0 is a valid entry, and implies that no Timer threads are desired.)

· If the data in this value is 1, there must be one set of four SUB_MBX values (described below). If the data in this value is greater than 1, three must be a corresponding quantity of four SUB_MBX values. If there are fewer than the required sets of four SUB_MBX values, the service will not start.

Example data:
1

4.11. RPC Server Settings

Registry Key: <CVIEWRootKey>\RPC
A registry key and one or more pairs of named values are required in order for unfulfilled Carrier and/or Inspection Report queries made to CVIEW to be forwarded to SAFER. One pair of values is used to forward unfulfilled Carrier queries and one is for unfulfilled Inspection Report queries. One value of the pair is either the host DNS Name or the equivalent IP address for the host on which the SAFER RPC Server, that will fulfill the forwarded type of query, resides. The other value of the pair is the name of the SAFER RPC Server Interface that supports that query type.

All of the value-data pairs related to Remote Procedure Call (RPC) configuration settings are stored in the RPC registry key. A description of the values and their corresponding data follows.

Carrier_RPC_Interface
This value is used to identify SAFER's RPC Server Carrier Query Interface, and is entered in the registry when CVIEW is installed. Do not modify the data in this value.
Carrier_RPCServer_Address
This value is used to identify the Carrier RPC Server host used to forward carrier queries.

· If this value is missing, carrier queries will not be forwarded.

Example data:
PSAFER5.SAFERSYS.ORG

IR_RPC_Interface
This value is used to identify SAFER's RPC Server Inspection Report Interface, and is entered in the registry when CVIEW is installed. Do not modify the data in this value or the RPC function will fail.
IR_RPCServer_Address
This value is used to identify the Inspection Report RPC Server host used to forward inspection report queries.

· If this value is missing, inspection report queries will not be forwarded.

Example data:
PSAFER5.SAFERSYS.ORG

5. SENDLIST Registry Settings

All of the registry keys pertaining to SENDLIST configuration settings are sub-keys of the following Sendlist “root” key:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\DCVIEW3BINCVIEW3\SENDLIST

In the descriptions below, the above root key is shortened to: <SENDLISTRootKey>

To make changes to these values and their keys in the registry you can use Regedit.exe. Recognize that experienced users only should edit the registry directly.

5.1. General Configuration Settings

Registry Key: <SENDLISTRootKey>\CONFIG
All of the value-data pairs related to general configuration settings are stored in the CONFIG registry key. A description of the values and their corresponding data follows.

EDI_MAPPER_REQUIRED
In certain situations EDI is not used to exchange data with other CVIEW installations. Normally EDI is required and this data element should be “Y” (Yes). If EDI is not required, this data element should be set to “N” (No).

Example data:
Y

IOTLog

This value is used to enable IOT logging which can provide details of incoming and outgoing message processing. Each IOT thread records information into its own log file in a separate directory (see the “Log Files and Event Log Entries” section). IOT Logging is normally used for troubleshooting provided that logging the results of each IOT Translation causes some performance degradation. The data placed into this value must be numeric, and be a zero or a one.

· If this value is missing, the service will assume logging is NOT required.

· 1 indicates logging is desired; 0 indicates no logging.

Example data:
0

OIG_Logging
This value is used to enable logging of requests for Inspection data. The data placed into this value must be numeric, and be a zero or a one.

· 1 indicates logging is desired; 0 indicates no logging.

Example data:
0

5.2. Database Settings

Registry Key: <SENDLISTRootKey>\Database

Database Name

This value stores the host name (alias) used by the Back End worker threads to connect to the services CVIEW database.

· If this value is missing or the data specified is an empty (null) string, the service will not start.

Example data:
MyAlias

Database Password
This value stores the login password used by the Back End worker threads to connect to the server’s local CVIEW database.

· If this value is missing or the data specified is an empty (null) string, the service will not start.

Example data:
MyPassword

Database Username
This value stores the login user ID used by the Back End worker threads to connect to the server’s local CVIEW database.

· If this value is missing or the data specified is an empty (null) string, the service will not start.

Example data:
MyUserID

5.3. Directory Settings

Registry Key: <SENDLISTRootKey>\Directories

IOTRootDir
This value contains the absolute path to the root of the directory tree in which the IOT threads will create their working directories (see Server Data Directory Structures section for discussion).

· If this value is missing or if the path specified does not exist, the service will not start.

· If possible, the path should point to a directory located on a high performance drive, since the IOT threads frequently access their working directories.

Example data:
D:\Sendlist\Threads

5.4. EDI Settings

Registry Key: <SENDLISTRootKey>\EDI
All of the value-data pairs related to Electronic Data Interchange (EDI) configuration settings are stored in the EDI registry key. A description of the values and their corresponding data follows.

EDITransLog
This value is used to enable verbose logging of the EDI translator. It is used only for troubleshooting of incoming or outgoing EDI mapping problems. Its use will cause a major degradation in the translation of these EDI messages. Each IOT thread generates its own EDI translator log file in a separate directory (see the “IOT” paragraph in the “Log Files and Event Log Entries” section). Enabling EDI translator logging will result in the generation of very large log files. If enabled at least 5GB of free space is required or EDI translation operations will fail. The data placed into this value must be a zero or a one.

· If this value is missing, the service will assume EDI translator logging is NOT required.

· 1 indicates logging is desired; 0 indicates no logging.

Example data:
0

HostFirstName
This value contains the first name used to identify the server within the EDI messages that are generated by the service. It is defined as a character string up to 25 characters in length. Represents the 2 state postal code.

Example data:
MD

HostLastName
This value contains the last name used to identify the server within the EDI messages that are generated by the service. It is defined as a character string up to 35 characters in length.

Example data:
CVIEW

HostMName
This value contains the middle name used to identify the server within the EDI messages that are generated by the service. It is defined as a character string up to 25 characters in length.

Example data:
AT

HostOrgName
This value contains the name used to identify the organization operating the server within the EDI messages that are generated by the service. It is defined as a character string up to 20 characters in length.

Example data:
MVA

InboundMap
This value contains the name (including extension) of the Inbound EDI map file. Note that this value does not include any path information (the path is specified in the InMapDir value). For this version, the data element placed into this value must be “X_Inboun.mmc”.
· If this value is missing or if the file specified does not exist (in the folder specified by the InMapDir value), the service will not start.

Example data:
X_Inboun.mmc

InMapDir
This value contains the absolute path to the directory containing the Inbound EDI map file.

· If this value is missing or if the path specified does not exist, the service will not start.

Example data:
D:\CVIEW3\Maps

IR TYPE
The data in this value indicates the type of inspection reports that will be stored on the server. Legal value data are “INTRA” (Intrastate), “INTER” (Interstate), “NONE”, or “BOTH.” The data “NONE” is placed into this value when the service is installed.

· If this value is missing or the data specified is an empty (null) string, the inspection reports won’t be stored.

Example data:
NONE

Map Retry
The maximum number of retries that will occur if a map execution error is detected is stored in this value. During normal operations, inbound or outbound map execution may fail due to infrequent system timing conditions. The IOT software automatically attempts to re-execute the map up to the number of additional attempts specified by the data in this registry value.

· If this value is missing, a default of 1 retry will be used.

Example data:
3

MY_TP_ID (“Trading Partner ID” in the Configuration Tool, on the General page)
Each server has a unique Trading Partner Identifier so that other servers receiving its EDI messages can identify the sender for auditing, tracking, or other purposes. This value contains the server’s assigned Trading Partner Identifier. The data placed into this value is an alphanumeric string of up to 10 characters.

· If this value is missing or the data specified is an empty (null) string, the service will not start.

· The string used is usually “CVIEW” immediately followed by the two-letter state postal code.

Example data:
CVIEWMD

MY_TPID_QUAL
This value specifies the “meaning” of the value of the Trading Partner Identifier specified by the MY_TP_ID value. It indicates whether the Trading Partner ID is a telephone number, social security number, CVIEW user name, etc. Since MY_TP_ID is usually a CVIEW user name, the string is usually "ZZ".

· If this value is missing or the data specified is an empty (null) string, the service will exhibit strange behavior.

Example data:
ZZ

NEXT EDI CONTROL NO
This value specifies the next Control Number that will be used in EDI messages. It is initialized to 100 when the CVIEW service is installed. It is incremented by the Service each time an EDI message is generated. When the CVIEW service is started, it reads the value of NEXT EDI CONTROL NO and EDI messages are generated with control numbers beginning at that value. When the CVIEW service is stopped, it saves its current internal value of EDI CONTROL NO to the registry for the next run of CVIEW. This value should only be changed following installation, if it is necessary to reset the EDI Control Number. (See your EDI Administrator).

Example data:
100

NextTransaction
All messages generated by the service contain a unique Reference Identifier for auditing and tracking purposes. The Reference ID is composed of a fixed alphanumeric string (of up to 20 characters) followed by a sequence number (of up to 10 characters). The sequence number is incremented by the service each time a message is generated. The value of the sequence number is initialized from the NextTransaction value when the service starts. When the service is stopped, the sequence number from the last message generated is incremented and written back to the registry for the next startup. The data placed into this value must be numeric, and be greater than zero.

· It is not normally necessary to make any changes to the data in this value.

· If this value is missing or the data specified is invalid, the service will not start.

Example data:
1

Outbound997Map
This value contains the name (including extension) of the Outbound 997 map file. Note that this value does not include any path information (the path is specified in the OutMapDir value). This map file is required in order for the service to generate EDI Functional Acknowledgement (997) transactions in response to incoming EDI messages that contain EDI syntax errors. For this version, we recommend that the data element placed into this value be a null string (“”).

· If this value is missing or if the data is an empty (null) string, functional acknowledgements will not be generated.

Example data:
""

OutboundMap
This value contains the name (including extension) of the Outbound EDI map file. Note that this value does not include any path information (the path is specified in the OutMapDir value). For this version, the data element placed into this value must be “X_OUTBOU.mmc”.
· If this value is missing or if the file specified does not exist (in the folder specified by the OutMapDir value), the service will not start.

Example data:
X_OUTBOU.mmc

OutMapDir
This value contains the absolute path to the directory containing the Outbound EDI map file.

· If this value is missing or if the path specified does not exist, the service will not start.

Example data:
D:\CVIEW3\Maps

TransIDPrefix
All messages generated by the service contain a unique Reference Identifier for auditing and tracking purposes. The Reference ID is composed of a fixed alphanumeric string (of up to 20 characters) followed by a sequence number (of up to 10 characters). The sequence number is incremented by the service each time a message is generated. The fixed portion of the Reference ID is specified by this value.

· The data stored in this value should be the same as the data in the MY_TP_ID value. (If you use the Service Configuration Tool application, it will automatically copy the data in the MY_TP_ID value into this value.)

· If this value is missing or the data specified is an empty (null) string, the service will not start.

· The string used is usually “CVIEW” immediately followed by the two-letter state postal code.

Example data:
SENDLIST

WANT 824
The existence of this value indicates that 824 reports of the designated type will be sent. Legal value data that define the type are “C” for carrier, “V” for vehicle, or “CV” for both. The data “C” is placed into this value when the service is installed.

· If this value is missing or the data specified is an empty (null) string, the 824’s won’t be produced.

Example data:
C

5.5. SMTP Mailbox Settings

Registry Key: <SENDLISTRootKey>\SMTP_MBX
All of the value-data pairs related to normal outbound e‑mail are stored in the SMTP_MBX registry key. A description of the values and their corresponding data follows.

SMTP_MBX_NAME (“Normal Outbound E‑Mail, Return Address” in the Configuration Tool)
This value contains the e‑mail return address used by the service whenever it sends out normal (non-error) e‑mail. This value also establishes the mailbox where EDI 824 acknowledgements will be returned. The return address must consist of the fully qualified input mailbox name including the domain.

· If this value is missing or the data specified is an empty (null) string, the service will not start.

Example data:
CVIEWMDIN@<DomainName>

SMTP_MBX_SERVER (“Normal Outbound E‑Mail, E‑Mail Server” in the Configuration Tool)
This value specifies the name of the SMTP server to which the back-end threads will connect to send out normal (non-error) e‑mail. Examples of normal e‑mail are answers to queries, and subscription updates.

· If this value is missing or the data specified is an empty (null) string, the service will not start.

Example data:
email.server.state.gov

One additional value, SMTP_MBX_PWORD can be found in the SMTP_MBX key; it is not used, however it must be present.

5.6. Error Mailbox Settings

Registry Key: <SENDLISTRootKey>\ERROR_MBX

All of the value-data pairs related to error outbound e‑mail are stored in the ERROR_MBX registry key. A description of the values and their corresponding data follows.

ERROR_MBX_NAME (“Error Message Outbound E‑Mail, Return Address” in the Configuration Tool)
This value contains the e‑mail return address used by the service whenever it sends out error response e‑mail related to queries and immediate subscription updates.

· If this value is missing or the data specified is an empty (null) string, the service will not start.

Example data:
CVIEWMDOUT@<DomainName>

ERROR_MBX_SERVER (“Error Message Outbound E‑Mail, E‑Mail Server” in the Configuration Tool)
This value specifies the name of the SMTP server to which the back-end threads will connect to send out error response e‑mail related to queries and immediate subscription updates.

· If this value is missing or the data specified is an empty (null) string, the service will not start.

Example data:
email.server.state.gov

One additional value, ERROR_MBX_PWORD can be found in the ERROR_MBX key; it is not used, however it must be present

6. Event Log Message Files

CVIEW Version 3 no longer requires that there be an individual folder for the Message DLL files. They are all contained in the CVIEW executable.

7. Server Data Directory Structures

CVIEW Version 3 manages several different directory tree structures for working directories, data queues, storage of log files, and storage of inspection reports.

7.1. IOT Threads

Each IOT thread is created to process a message read by an Input Mailbox, Subscription thread, or LSI directory thread. When the thread finishes processing that one message, it exits. Each IOT thread creates a directory for working files used by the EDI translator to translate incoming EDI messages and to save IOT log files. This occurs if the value of the IOTLog registry key equals 1. The thread’s working directory is located in the directory specified by the value associated with the IOTROOTDIR registry key. The name of each thread’s working directory is Iots_n; where n is the thread’s index. The thread’s index is a number ranging from 1 to the value of the IOT_Threads registry key. Each time an IOT thread is created, it is assigned an index whose value is one more than the number of IOT threads that are active at that time.

To reduce the processing time for each IOT thread, the thread creates a working directory for itself if none exists. The IOT threads do not delete their working directories before they exit for the same reason.

7.2. Back End Threads

Each Back End worker thread creates its own working directory for working files used by the EDI translator to generate outgoing EDI messages. Each thread’s working directory is located in the directory specified by the value of the IOTROOTDIR registry key. The name of each thread’s working directory is SAFERW_n. n ranges from 1 to the value of the SAFER WORKERS registry key and indicates that the thread is the “nth” Back End worker thread created by the service. When the service is shutdown, each thread deletes its working directory before it exits.

7.3. Temporary Files

During processing of the e‑mail messages read by the Input Mailbox and Subscription threads, temporary files are created and stored in the System’s Windows NT Temporary directory. The temp directory is defined as an environment variable and is usually specified as \Temp on the drive in which the operating system is installed. These files are deleted once processing of the message is successful.

When incoming EDI messages, outgoing message files, ASPEN IR archive (zip) files are translated, the working files are created and reside in the IOT working directory for each associated thread. These are defined as either an IOT Translator thread or Back End Worker thread.

Occasionally, should IOT not be able to properly build an outgoing message, an error message file named ~outerrn (where n is a system generated number) will be saved in the system Temporary directory for later analysis.

The error and other files, which are not automatically deleted by the system, need to be manually deleted.

7.4. Data Queue Files

The Request data queue is backed up by a file that resides in the directory specified by the QUEUE_PATH registry key. The name of the file is SAFREQ.QUE. Because there is a significant and continuous amount of file activity associated with backing up the queue as transactions are added and removed, the QUEUE_PATH key value should specify a high performance disk drive directory. If the queue file is missing, the operating system will attempt to create it. It will generate a queue file whose size is as specified by the REQUEST_QUE_SIZE registry key value. This happens whether or not there is any data in the queue. Therefore, sufficient space must be available on the disk specified by the QUEUE_PATH registry key value for the total size of the Request queue file.

8. Log Files and Event Log Entries

8.1. Subscription threads

Subscription threads are in most cases synonymous with Mailbox Timers. Mailbox Timers are defined in the registry and are used to identify the number of subscription mailboxes that have been set up for a specific CVIEW user or subscriber. At a specified interval or time of day, the CVIEW Service will connect to this mailbox at the Volpe Center, and process the contents by modifying its local database. Every Subscription thread generates an event log entry each time it connects to its CVIEW mailbox. The information in the event message includes the thread’s index value (ranging from 1 to the value defined as Mailbox Timers in the registry), the date and time the mailbox is read, the name of the mail Server, the mailbox, and the number of messages found (message count).

8.2. IOT

If IOT logging is enabled, (IOTLog registry value is 1). The IOT threads generate log files in their own working directories. Each time an incoming message is processed a new log file is created. Each log file name is unique and is of the form <name>.log, where <name> is comprised of either 11 or 12 hexadecimal characters.

If EDI translator logging is enabled, (EDITransLog registry value is 1). A file named MERCTRACE.TXT is generated in the thread’s working directory. This file contains EDI translator log entries, intended to support analysis of EDI mapping problems.

For the Back End worker threads, each thread’s working directories are deleted when the service is shutdown. The IOT log files are created in the directory specified by the value of the IOTROOTDIR registry key. A new log file is created each time the service is started. The name of the log file is of the form DDHHMMSS_n.log, where DDHHMMSS represents the day of the month, and the time (24 hour) when the log file is created. n indicates which Back End worker thread (ranging from 1 to the value of the SAFER WORKERS registry key) created the log file and for whom the log entries apply.

A special log file named DDHHMMSS.log is also created. This log file contains the log entries of the main service thread and records Transaction data queue operations and errors that may have occurred during the IOT’s initialization processing. This file is useful if the IOT initialization fails at service startup since it contains entries that indicate the specific problem (typically a missing or invalid registry file setting).

9. ASPEN 2.1 Connectivity Through CVIEW

When CVIEW V3 is deployed, an ASPEN user will be able to connect to the CVIEW server but still query SAFER and upload data to SAFER. Minor changes to the ASPEN configuration will be required to do this.

The user should proceed as follows.

1. Open the ASPEN 2.1 application

2. On the top menu bar, go to System, then to Manager Configuration.

3. Enter the configuration manager password and click OK.

4. Go to the General tab.

5. Click on the Communications button.

6. In the Configuration screen, go to the Destination tab.

a. Inspection Destination should remain “SAFER”.

b. Change SAFER Server Name to the CVIEW server name.

c. Change SAFER Mailbox to the CVIEW mailbox.

d. Enter the CVIEW UserID and password.

e. Enter the State (Blizzard) mailbox name.

f. Verify these names by contacting the CVIEW system administrator if necessary.

7. Still in the Configuration screen, go to the Connection tab.

a. If using dialup, enter the correct telephone number for the CVIEW.

8. Click OK.

9. Click OK again to save Configuration changes.

10. LSI Update Sequencing

Legacy System Interface (LSI) software components are used to import data extracted from state legacy systems into the service's database. One or more data files generated on the legacy system, which comprise an "update data set", may contain several thousand records. These data files are transmitted (via FTP, for example) to a directory on the CVIEW system, where they are retrieved and processed by the service, via the LSI component.

Each update data set may contain multiple records for the same entity (i.e., the same carrier or the same vehicle). The order in which the records will be processed may not be the same as the order that the records appear in the legacy data file.

There is no way to determine the order in which updates contained in multiple update data files will be processed. Should one or more update data sets arrive at CVIEW while another update data set of the same type (for example, an IRP vehicle update) is being processed, updates for the same entity may be performed out of sequence (i.e., an update that should be performed before another update for a particular entity may be performed after the other update). Therefore, only one update set of any type should be transmitted from a legacy system to CVIEW and completely processed before any subsequent update sets of that type are forwarded to CVIEW for processing.

11. Service Startup

The following describes the sequence of thread related processing that is performed during the startup of the CVIEW service. See the Multi-Threaded CVIEW Initialization figure for an illustration of the startup thread related data structures and the thread creation process.

When CVIEW is started, "Parameters" argument identifies the set of registry configuration parameters used for the run.

INPUT_initialize is then called and does the following:

· calls IOTS_initialize_translator_Server to initialize IOT data structures and read configuration information from the registry

· creates a Dispatcher thread to send system status to remote monitoring applications

· reads the SMTP account, password, & SMTP Service host name and saves them in global memory for the output threads to connect to for generating output messages

· gets the DB user, password & host names and saves them in global memory for the Back End worker threads to use to connect to the database

· starts the Back End worker threads (via IMH_init_backend)

· starts the Input MBX threads (via INPUT_init_input_MBXs)

· starts the Input Subscription threads (via INPUT_init_timers)

· starts the Input LSI Directory threads (via INPUT_init_Dir_threads)

The details of thread startup are as follows:

IMH_init_backend gets the number of Back End threads from the registry file and creates the worker threads.

For each Back End worker thread, IMH_init_backend creates an event (Thread Ready) that will be used to signal that the thread was created correctly and is ready for work. It creates the Back End worker thread and then waits on the worker thread’s ready event before repeating the process for the other threads.

When each Back End thread starts, it creates a Stop Thread Event, used to signal the thread to terminate (in response to an operator shutdown request). Each Back End thread connects to the database, initializes thread level IOT data structures (including IOT logging), and sets its Ready Event, indicating that it is ready for work.

INPUT_init_input_MBXs gets the number of Input MBX threads from the registry and creates SAFER_thread_data_t structures to pass mailbox configuration information to the Input MBX threads. It reads the value of Max POP Messages from the registry, and saves it (or a default if the key is missing or invalid) to be passed to each Input MBX and Subscription thread. It also reads and stores the POP3 Input Post Office, POP3 MBX account and account password in each Input MBX thread’s SAFER_thread_data_t structure. It also creates a Stop Event for the thread, which is used to signal the thread to terminate at shutdown; saving the event’s Handle in the thread’s SAFER_thread_data_t structure. It then creates the Input MBX thread, passing it the address of the thread’s SAFER_thread_data_t structure. At startup, the thread will connect to the mailbox and begin to read mail.

INPUT_init_Timers is similar to INPUT_init_input_MBXs in operation. It gets the number of Subscription threads from the registry and in addition to the other POP3 mail data, it reads the Timer Interval for each thread. It creates SAFER_thread_data_t structures and Stop Events as did INPUT_init_input_MBXs.

When each Subscription Thread starts, instead of immediately connecting to and reading its mailbox, it determines how long it should wait, based on its Timer Interval. It waits until that time and then connects to its mailbox and reads any mail found at that time.

INPUT_init_Dir_threads is similar to INPUT_init_Timers in operation. It gets the number of LSI Directory threads from the registry and reads the LSI kickoff message Directory path for each thread. It creates SAFER_thread_data_t structures and Stop Events as did INPUT_init_Timers.

After INPUT_init_Dir_threads completes, the main thread executes the Dispatcher function, which updates the service's internal system monitoring data (number of active threads, number of queue entries, etc.) for use by remote monitoring applications and also waits for a service shutdown request from an operator.

[image: image10.wmf]SAFER_thread_data_t

IMH_Input_Thread

S

AFER_thread_data_t

Input_Subscription_Update

MBX Account

MBX Password

MBX Host

Process Interval

Max Messages

Stop Event

Thread Number

Thread Type

INPUT_init_Timers

CVIEW Thread Initialization

Dispatcher

Stop Event

Create Thread

Thread

Legend

Send_status_thread

Registry

Registry

Registry

Registry

IMH_Process_transaction

Thread Ready Event

Thread Handle

Thread Number

Thread Type

Wake Thread Event

Stop Thread Event

SAFER_thread_data_t

MBX Account

MBX Password

MBX Host

Stop Event

Polling Interval

Max Messages

Thread Number

Thread Type

CSAFERv3_Main

Stop

Thread

Event

INPUT_init_input_MBXs

INPUT_Directory_Thread

SAFER_thread_data_t

Directory Path

Stop Event

Thread Number

Thread Type

Registry

IMH_init_backend

INPUT_init_Dir_threads

INPUT_INITIALIZE

2/25/02

12. Service Shutdown

The Multi-Threaded CVIEW Shutdown Flow Diagram on the next page illustrates the thread related shutdown processing for the CVIEW service. While the figure illustrates the process for both Command Line and NT Service configurations, the following discussion covers only the NT Service shutdown sequence.

The Dispatcher receives the Stop Event signal from the NT Services control application when an operator clicks the “Stop Service” button. The Dispatcher calls the IMH_Shutdown function, which performs all service shutdown processing.

IMH_Shutdown first signals each Input MBX thread to terminate by setting each thread’s Stop Event. It then waits for all of the threads to exit before continuing. The Subscription MBX threads are then signaled to terminate. IMH_Shutdown again waits for all threads to exit before continuing. Similarly, IMH_Shutdown signals each Back End worker thread to terminate and waits for all of the threads to exist.

Each Back End worker thread disconnects from the database and then calls IOT to clean up its thread level data structures and close the thread’s IOT log file (if IOT logging was enabled) . The thread then deletes all of the files in its working directory and removes the working directory itself.

When all Back End threads have exited, IMH_Shutdown calls IOT to clean up its Server level data structures. The IOT close function waits for all IOT threads to terminate before performing its cleanup processing. Because there is currently no way to restart inbound message processing in the middle of a request or update message, each IOT thread that is active (processing a request or update) when the operator initiates a shutdown must be allowed to complete. When all IOT threads have exited, the IOT cleanup function saves the Reference ID for the next outgoing message to the registry file, closes the Main thread’s IOT log file (if IOT logging was enabled), and returns.

IMH_Shutdown then calls SDB_shutdown and SDM_shutdown to perform any required shutdown processing and then returns to the Dispatcher. When IMH_Shutdown returns, the Dispatcher returns to the Service’s Main function, which exits.

If any of the threads are busy at the time the shutdown is initiated, they may not respond to the shutdown request immediately. After an initial time out period, a Message Box will be displayed asking if the shutdown module should continue to wait for the thread. If the operator wishes the thread to complete its processing rather than force the thread to abort, he should click on the “Yes” button. If he wishes to force the shutdown, and thereby abort the processing being performed by the thread, he should click on the “No” button.

[image: image11.wmf]Input

MBX Thread

CVIEW Shutdown Flow Diagram

2/25/02

Subscription

MBX Thread

Subscription

Thread Stop

Event

Signal Event

Thread

Legend

IMH_Process_Transaction

Stop

Thread

Event

Input

Thread

Stop

Event

IOT

Translator Thread

Dispatcher

Stop

Event

IOTS_close_translator_Server

NT Services Control App

Send_Status_thread

Stop Event

SERVICE Stop

send_status_thread

INPUT

Dir Thread

Input

Dir_Thread

Stop

Event

IMH_Dispatcher

IMH_Shutdown

O

2

O

3

O

4

O

1

O

5

O

6

O

n

Order of Actions

CVIEW Version 3.3 Configuration Definition Document

� If either the Request or Update Data Queue becomes filled to capacity (because the front end IOT threads has added transactions to the queue faster than the Back End Worker threads can process them), each front end IOT thread will wait for a short period of time and then try again to add its transaction to the appropriate queue. This wait-retry loop will continue until the transaction has been added to the queue.

� E�mail messages read by the CVIEW service are deleted from the thread’s mailbox only after the thread disconnects from the POP3 E�mail Service.

_1077359716.vsd

_1077359671.vsd

